Unknown

Dataset Information

0

Spectroscopic evidence of superconductivity pairing at 83 K in single-layer FeSe/SrTiO3 films.


ABSTRACT: Single-layer FeSe films grown on the SrTiO3 substrate (FeSe/STO) have attracted much attention because of their possible record-high superconducting critical temperature (Tc) and distinct electronic structures. However, it has been under debate on how high its Tc can really reach due to the inconsistency of the results from different measurements. Here we report spectroscopic evidence of superconductivity pairing at 83 K in single-layer FeSe/STO films. By preparing high-quality single-layer FeSe/STO films, we observe strong superconductivity-induced Bogoliubov back-bending bands that extend to rather high binding energy ~ 100 meV by high-resolution angle-resolved photoemission measurements. They provide a new definitive benchmark of superconductivity pairing that is directly observed up to 83 K. Moreover, we find that the pairing state can be further divided into two temperature regions. These results indicate that either Tc as high as 83 K is achievable, or there is a pseudogap formation from superconductivity fluctuation in single-layer FeSe/STO films.

SUBMITTER: Xu Y 

PROVIDER: S-EPMC8121788 | biostudies-literature | 2021 May

REPOSITORIES: biostudies-literature

altmetric image

Publications

Spectroscopic evidence of superconductivity pairing at 83 K in single-layer FeSe/SrTiO<sub>3</sub> films.

Xu Yu Y   Rong Hongtao H   Wang Qingyan Q   Wu Dingsong D   Hu Yong Y   Cai Yongqing Y   Gao Qiang Q   Yan Hongtao H   Li Cong C   Yin Chaohui C   Chen Hao H   Huang Jianwei J   Zhu Zhihai Z   Huang Yuan Y   Liu Guodong G   Xu Zuyan Z   Zhao Lin L   Zhou X J XJ  

Nature communications 20210514 1


Single-layer FeSe films grown on the SrTiO<sub>3</sub> substrate (FeSe/STO) have attracted much attention because of their possible record-high superconducting critical temperature (T<sub>c</sub>) and distinct electronic structures. However, it has been under debate on how high its T<sub>c</sub> can really reach due to the inconsistency of the results from different measurements. Here we report spectroscopic evidence of superconductivity pairing at 83 K in single-layer FeSe/STO films. By prepari  ...[more]

Similar Datasets

| S-EPMC10833465 | biostudies-literature
| S-EPMC6325130 | biostudies-literature
| S-EPMC6486228 | biostudies-literature
| S-EPMC5856486 | biostudies-literature
| S-EPMC6411874 | biostudies-literature
| S-EPMC4284572 | biostudies-literature
| S-EPMC5548863 | biostudies-literature
| S-EPMC8505662 | biostudies-literature
| S-EPMC6377624 | biostudies-literature
| S-EPMC4748121 | biostudies-other