Unknown

Dataset Information

0

Decoupling the effects of hydrophilic and hydrophobic moieties at the neuron-nanofibre interface.


ABSTRACT: Peptide-based nanofibres are a versatile class of tunable materials with applications in optoelectronics, sensing and tissue engineering. However, the understanding of the nanofibre surface at the molecular level is limited. Here, a series of homologous dilysine-diphenylalnine tetrapeptides were synthesised and shown to self-assemble into water-soluble nanofibres. Despite the peptide nanofibres displaying similar morphologies, as evaluated through atomic force microscopy and neutron scattering, significant differences were observed in their ability to support sensitive primary neurons. Contact angle and labelling experiments revealed that differential presentation of lysine moieties at the fibre surface did not affect neuronal viability; however the mobility of phenylalanine residues at the nanofibre surface, elucidated through solid- and gel-state NMR studies and confirmed through tethered bilayer lipid membrane experiments, was found to be the determining factor in governing the suitability of a given peptide as a scaffold for primary neurons. This work offers new insights into characterising and controlling the nanofibre surface at the molecular level.

SUBMITTER: Martin AD 

PROVIDER: S-EPMC8148083 | biostudies-literature | 2019 Dec

REPOSITORIES: biostudies-literature

altmetric image

Publications

Decoupling the effects of hydrophilic and hydrophobic moieties at the neuron-nanofibre interface.

Martin Adam D AD   Wojciechowski Jonathan P JP   Du Eric Y EY   Rawal Aditya A   Stefen Holly H   Au Carol G CG   Hou Liming L   Cranfield Charles G CG   Fath Thomas T   Ittner Lars M LM   Thordarson Pall P  

Chemical science 20191218 5


Peptide-based nanofibres are a versatile class of tunable materials with applications in optoelectronics, sensing and tissue engineering. However, the understanding of the nanofibre surface at the molecular level is limited. Here, a series of homologous dilysine-diphenylalnine tetrapeptides were synthesised and shown to self-assemble into water-soluble nanofibres. Despite the peptide nanofibres displaying similar morphologies, as evaluated through atomic force microscopy and neutron scattering,  ...[more]

Similar Datasets

| S-EPMC8758420 | biostudies-literature
| S-EPMC5604469 | biostudies-literature
| S-EPMC9123946 | biostudies-literature
| S-EPMC9109053 | biostudies-literature
| S-EPMC5719059 | biostudies-literature
| S-EPMC4103151 | biostudies-literature
| S-EPMC10263177 | biostudies-literature
| S-EPMC10662218 | biostudies-literature
| S-EPMC1914426 | biostudies-literature