Targeting chronic and evolving neuroinflammation following traumatic brain injury to improve long-term outcomes: insights from microglial-depletion models.
Targeting chronic and evolving neuroinflammation following traumatic brain injury to improve long-term outcomes: insights from microglial-depletion models.
Project description:BackgroundTraumatic brain injury (TBI) is a leading cause of death and disability worldwide. Microglial/macrophage activation and neuroinflammation are key cellular events following TBI, but the regulatory and functional mechanisms are still not well understood. Myeloid-epithelial-reproductive tyrosine kinase (Mer), a member of the Tyro-Axl-Mer (TAM) family of receptor tyrosine kinases, regulates multiple features of microglial/macrophage physiology. However, its function in regulating the innate immune response and microglial/macrophage M1/M2 polarization in TBI has not been addressed. The present study aimed to evaluate the role of Mer in regulating microglial/macrophage M1/M2 polarization and neuroinflammation following TBI.MethodsThe controlled cortical impact (CCI) mouse model was employed. Mer siRNA was intracerebroventricularly administered, and recombinant protein S (PS) was intravenously applied for intervention. The neurobehavioral assessments, RT-PCR, Western blot, magnetic-activated cell sorting, immunohistochemistry and confocal microscopy analysis, Nissl and Fluoro-Jade B staining, brain water content measurement, and contusion volume assessment were performed.ResultsMer is upregulated and regulates microglial/macrophage M1/M2 polarization and neuroinflammation in the acute stage of TBI. Mechanistically, Mer activates the signal transducer and activator of transcription 1 (STAT1)/suppressor of cytokine signaling 1/3 (SOCS1/3) pathway. Inhibition of Mer markedly decreases microglial/macrophage M2-like polarization while increases M1-like polarization, which exacerbates the secondary brain damage and sensorimotor deficits after TBI. Recombinant PS exerts beneficial effects in TBI mice through Mer activation.ConclusionsMer is an important regulator of microglial/macrophage M1/M2 polarization and neuroinflammation, and may be considered as a potential target for therapeutic intervention in TBI.
Project description:Microglia, predominant parenchymal resident macrophages in the central nervous system (CNS), are crucial players in neurodevelopment and CNS homeostasis. In disease conditions, pro-inflammatory microglia predominate over their regulatory counterparts, and are thus a potential immunotherapeutic target. It has been well documented that microglia can be effectively depleted using both conditional genetic Cx3cr1Cre-diphtheria toxin receptor (DTR)/diphtheria toxin subunit A (DTA) animal models and pharmacological colony-stimulating factor 1 receptor (CSF1R) inhibitors. Recent advances using these approaches have expanded our knowledge of the multitude of tasks conducted by microglia in both homeostasis and diseases. Importantly, experimental microglial depletion has been proven to exert neuroprotective effects in an increasing number of disease models, mostly explained by reduced neuroinflammation. However, the comprehensive effects of additional targets such as circulating monocytes and peripheral tissue macrophages during microglial depletion periods have not been investigated widely, and for those studies addressing the issue the conclusions are mixed. In this study, we demonstrate that experimental microglial depletion using both Cx3cr1CreER/+Rosa26DTA/+ mice and different doses of CSF1R inhibitor PLX3397 exert crucial influences on circulating monocytes and peripheral tissue macrophages. Our results suggest that effects on peripheral immunity should be considered both in interpretation of microglial depletion studies, and especially in the potential translation of microglial depletion and replacement therapies.
Project description:Aged microglia display augmented inflammatory activity after neural injury. Although aging is a risk factor for poor outcome after brain insults, the precise impact of aging-related alterations in microglia on neural injury remains poorly understood. Microglia can be eliminated via pharmacological inhibition of the colony-stimulating factor 1 receptor (CSF1R). Upon withdrawal of CSF1R inhibitors, microglia rapidly repopulate the entire brain, leading to replacement of the microglial compartment. In this study, we investigated the impact of microglial replacement in the aged brain on neural injury using a mouse model of intracerebral hemorrhage (ICH) induced by collagenase injection. We found that replacement of microglia in the aged brain reduced neurological deficits and brain edema after ICH. Microglial replacement-induced attenuation of ICH injury was accompanied with alleviated blood-brain barrier disruption and leukocyte infiltration. Notably, newly repopulated microglia had reduced expression of IL-1β, TNF-α and CD86, and upregulation of CD206 in response to ICH. Our findings suggest that replacement of microglia in the aged brain restricts neuroinflammation and brain injury following ICH.
Project description:BackgroundAlzheimer's disease (AD) is considered to have a multifactorial etiology. The hallmark of AD is progressive neurodegeneration, which is characterized by the deepening loss of memory and a high mortality rate in the elderly. The neurodegeneration in AD is believed to be exacerbated following the intercoupled cascades of extracellular amyloid beta (Aβ) plaques, uncontrolled microglial activation, and neuroinflammation. Current therapies for AD are mostly designed to target the symptoms, with limited ability to address the mechanistic triggers for the disease. In this study, we report a novel nanotechnology based on microglial scavenger receptor (SR)-targeting amphiphilic nanoparticles (NPs) for the convergent alleviation of fibril Aβ (fAβ) burden, microglial modulation, and neuroprotection.MethodsWe designed a nanotechnology approach to regulate the SR-mediated intracellular fAβ trafficking within microglia. We synthesized SR-targeting sugar-based amphiphilic macromolecules (AM) and used them as a bioactive shell to fabricate serum-stable AM-NPs via flash nanoprecipitation. Using electron microscopy, in vitro approaches, ELISA, and confocal microscopy, we investigated the effect of AM-NPs on Aβ fibrilization, fAβ-mediated microglial inflammation, and neurotoxicity in BV2 microglia and SH-SY5Y neuroblastoma cell lines.ResultsAM-NPs interrupted Aβ fibrilization, attenuated fAβ microglial internalization via targeting the fAβ-specific SRs, arrested the fAβ-mediated microglial activation and pro-inflammatory response, and accelerated lysosomal degradation of intracellular fAβ. Moreover, AM-NPs counteracted the microglial-mediated neurotoxicity after exposure to fAβ.ConclusionsThe AM-NP nanotechnology presents a multifactorial strategy to target pathological Aβ aggregation and arrest the fAβ-mediated pathological progression in microglia and neurons.
Project description:Nogo-A, B, and C are well described members of the reticulon family of proteins, most well known for their negative regulatory effects on central nervous system (CNS) neurite outgrowth and repair following injury. Recent research indicates a relationship between Nogo-proteins and inflammation. Microglia, the brain's immune cells and inflammation-competent compartment, express Nogo protein, although specific roles of the Nogo in these cells is understudied. To examine inflammation-related effects of Nogo, we generated a microglial-specific inducible Nogo KO (MinoKO) mouse and challenged the mouse with a controlled cortical impact (CCI) traumatic brain injury (TBI). Histological analysis shows no difference in brain lesion sizes between MinoKO-CCI and Control-CCI mice, although MinoKO-CCI mice do not exhibit the levels of ipsilateral lateral ventricle enlargement as injury matched controls. Microglial Nogo-KO results in decreased lateral ventricle enlargement, microglial and astrocyte immunoreactivity, and increased microglial morphological complexity compared to injury matched controls, suggesting decreased tissue inflammation. Behaviorally, healthy MinoKO mice do not differ from control mice, but automated tracking of movement around the home cage and stereotypic behavior, such as grooming and eating (termed cage "activation"), following CCI is significantly elevated. Asymmetrical motor function, a deficit typical of unilaterally brain lesioned rodents, was not detected in CCI injured MinoKO mice, while the phenomenon was present in CCI injured controls 1-week post-injury. Overall, our studies show microglial Nogo as a negative regulator of recovery following brain injury. To date, this is the first evaluation of the roles microglial specific Nogo in a rodent injury model.
Project description:BackgroundNeuroinflammation has been widely accepted as a cause of the degenerative process. Increasing interest has been devoted to developing intervening therapeutics for preventing neuroinflammation in Parkinson's disease (PD). It is well known that virus infections, including DNA viruses, are associated with an increased risk of PD. In addition, damaged or dying dopaminergic neurons can release dsDNA during PD progression. However, the role of cGAS, a cytosolic dsDNA sensor, in PD progression remains unclear.MethodsAdult male wild-type mice and age-matched male cGAS knockout (cGas-/- ) mice were treated with MPTP to induce neurotoxic PD model, and then behavioral tests, immunohistochemistry, and ELISA were conducted to compare disease phenotype. Chimeric mice were reconstituted to explore the effects of cGAS deficiency in peripheral immune cells or CNS resident cells on MPTP-induced toxicity. RNA sequencing was used to dissect the mechanistic role of microglial cGAS in MPTP-induced toxicity. cGAS inhibitor administration was conducted to study whether GAS may serve as a therapeutic target.ResultsWe observed that the cGAS-STING pathway was activated during neuroinflammation in MPTP mouse models of PD. cGAS deficiency in microglia, but not peripheral immune cells, controlled neuroinflammation and neurotoxicity induced by MPTP. Mechanistically, microglial cGAS ablation alleviated the neuronal dysfunction and inflammatory response in astrocytes and microglia by inhibiting antiviral inflammatory signaling. Additionally, the administration of cGAS inhibitors conferred the mice neuroprotection during MPTP exposure.ConclusionsCollectively, these findings demonstrate microglial cGAS promote neuroinflammation and neurodegeneration during the progression of MPTP-induced PD mouse models and suggest cGAS may serve as a therapeutic target for PD patients.Limitations of the studyAlthough we demonstrated that cGAS promotes the progression of MPTP-induced PD, this study has limitations. We identified that cGAS in microglia accelerate disease progression of PD by using bone marrow chimeric experiments and analyzing cGAS expression in CNS cells, but evidence would be more straightforward if conditional knockout mice were used. This study contributed to the knowledge of the role of the cGAS pathway in PD pathogenesis; nevertheless, trying more PD animal models in the future will help us to understand the disease progression deeper and explore possible treatments.
Project description:Intracerebral hemorrhage (ICH) is a significant health concern associated with high mortality. Cofilin plays a crucial role in stress conditions, but its signaling following ICH in a longitudinal study is yet to be ascertained. In the present study, we examined the cofilin expression in human ICH autopsy brains. Then, the spatiotemporal cofilin signaling, microglia activation, and neurobehavioral outcomes were investigated in a mouse model of ICH. Human autopsy brain sections from ICH patients showed increased intracellular cofilin localization within microglia in the perihematomal area, possibly associated with microglial activation and morphological changes. Various cohorts of mice were subjected to intrastriatal collagenase injection and sacrificed at time points of 1, 3, 7, 14, 21, and 28 days. Mice suffered from severe neurobehavioral deficits after ICH, lasting for 7 days, followed by a gradual improvement. Mice suffered post-stroke cognitive impairment (PSCI) both acutely and in the chronic phase. Hematoma volume increased from day 1 to 3, whereas ventricle size increased from day 21 to 28. Cofilin protein expression increased in the ipsilateral striatum on days 1 and 3 and then decreased from days 7 to 28. An increase in activated microglia was observed around the hematoma on days 1 to 7, followed by a gradual reduction up to day 28. Around the hematoma, activated microglia showed morphological changes from ramified to amoeboid. mRNA levels of inflammatory [tumor necrosis factor-α (TNF-α), interleukin 1β (IL-1β), and interleukin-6 (IL-6) and anti-inflammatory markers [interleukin-10 (IL-10), transforming growth factor-β TGF-β, and arginase I (Arg1)] increased during the acute phase and decreased in the chronic phase. Blood cofilin levels increased on day 3 and matched the increase in chemokine levels. slingshot protein phosphatase 1 (SSH1) protein, which activates cofilin, was increased from day 1 to 7. These results suggest that microglial activation might be the sequel of cofilin overactivation following ICH, leading to widespread neuroinflammation and consequent PSCI.
Project description:Neuroinflammation in the central nervous system (CNS), driven largely by resident phagocytes, has been proposed as a significant contributor to disability accumulation in multiple sclerosis (MS) but has not been addressed therapeutically. Bruton's tyrosine kinase (BTK) is expressed in both B-lymphocytes and innate immune cells, including microglia, where its role is poorly understood. BTK inhibition may provide therapeutic benefit within the CNS by targeting adaptive and innate immunity-mediated disease progression in MS. Using a CNS-penetrant BTK inhibitor (BTKi), we demonstrate robust in vivo effects in mouse models of MS. We further identify a BTK-dependent transcriptional signature in vitro, using the BTKi tolebrutinib, in mouse microglia, human induced pluripotent stem cell (hiPSC)-derived microglia, and a complex hiPSC-derived tri-culture system composed of neurons, astrocytes, and microglia, revealing modulation of neuroinflammatory pathways relevant to MS. Finally, we demonstrate that in MS tissue BTK is expressed in B-cells and microglia, with increased levels in lesions. Our data provide rationale for targeting BTK in the CNS to diminish neuroinflammation and disability accumulation.
Project description:Microglia are rapidly activated following ischaemic stroke and participate in the induction of neuroinflammation, which exacerbates the injury of ischaemic stroke. However, the mechanisms regulating ischaemic microglia remain unclear. In the present study, middle cerebral artery occlusion and oxygen and glucose deprivation models were established for in vivo and vitro monitoring of experimental stroke. We applied recombinant human thioredoxin-1 (rhTrx-1) and Necrostatin-1 (Nec-1, inhibitor of RIPK1) to examine the role of receptor-interacting protein kinase 1 (RIPK1) in the development of inflammation in ischaemic microglia via explored the inflammatory responses and the associated mechanisms. Molecular docking results indicated that rhTrx-1 could directly bind to RIPK1. In vivo and vitro data revealed that rhTrx-1 reduced necroptosis, mitochondrial membrane potential damage, reactive oxygen species accumulation and NLR Family, pyrin domain-containing 3 protein (NLRP3) inflammasome activation and regulated the microglial M1/M2 phenotypic changes by inhibiting RIPK1 expression in ischaemic microglia. Consistent with these findings, further in vivo experiments revealed that rhTrx-1 treatment attenuated cerebral ischaemic injury by inhibiting the inflammatory response. Our data demonstrated the role of RIPK1 in microglia-induced neuroinflammation following cerebral ischaemia. Administration of rhTrx-1 provides neuroprotection in ischaemic stroke-induced microglial neuroinflammation by inhibiting RIPK1 expression.
Project description:Subarachnoid hemorrhage induces extensive neuronal cell death, leading to the release of damage-associated molecular patterns (DAMPs). These DAMPs, along with hemoglobin and cell corpses, trigger localized inflammation. Signal regulatory protein alpha (SIRPα) plays a crucial role in efferocytosis by acting as a "don't eat-me" signal, modulating inflammation and tissue homeostasis. However, the precise function and regulatory mechanisms of SIRPα in efferocytosis remain unclear. Proteomic analysis of cerebrospinal fluid (CSF) reveals that SIRPα levels are significantly elevated in the CSF of SAH patients and correlate with clinical outcomes. In vivo and in vitro studies show that microglial knockdown of SIRPα promotes efferocytosis and attenuates neuroinflammation following SAH. SIRPα inhibits efferocytosis by recruiting and phosphorylating SHP1 and SHP2 through phosphorylation of four tyrosine residues in its cytoplasmic domain, with SHP1 playing a particularly critical role. Mutation of these tyrosine residues to non-phosphorylatable alanine residues enhances efferocytosis and reduces neuroinflammation in vitro. RNA-seq analysis suggests that this mutation upregulates the expression of "eat-me" signals, MerTK and CD36, and identifies STAT6 as a key transcription factor involved in this process. In conclusion, SIRPα plays a central role in regulating microglia efferocytosis and neuroinflammation after SAH via the SHP1/STAT6 axis. Targeting this pathway may provide a promising therapeutic approach for SAH.