Unknown

Dataset Information

0

Detecting structural heterogeneity in single-molecule localization microscopy data.


ABSTRACT: Particle fusion for single molecule localization microscopy improves signal-to-noise ratio and overcomes underlabeling, but ignores structural heterogeneity or conformational variability. We present a-priori knowledge-free unsupervised classification of structurally different particles employing the Bhattacharya cost function as dissimilarity metric. We achieve 96% classification accuracy on mixtures of up to four different DNA-origami structures, detect rare classes of origami occuring at 2% rate, and capture variation in ellipticity of nuclear pore complexes.

SUBMITTER: Huijben TAPM 

PROVIDER: S-EPMC8213809 | biostudies-literature | 2021 Jun

REPOSITORIES: biostudies-literature

altmetric image

Publications

Detecting structural heterogeneity in single-molecule localization microscopy data.

Huijben Teun A P M TAPM   Heydarian Hamidreza H   Auer Alexander A   Schueder Florian F   Jungmann Ralf R   Stallinga Sjoerd S   Rieger Bernd B  

Nature communications 20210618 1


Particle fusion for single molecule localization microscopy improves signal-to-noise ratio and overcomes underlabeling, but ignores structural heterogeneity or conformational variability. We present a-priori knowledge-free unsupervised classification of structurally different particles employing the Bhattacharya cost function as dissimilarity metric. We achieve 96% classification accuracy on mixtures of up to four different DNA-origami structures, detect rare classes of origami occuring at 2% ra  ...[more]

Similar Datasets

| S-EPMC10643625 | biostudies-literature
| S-EPMC9160414 | biostudies-literature
| S-EPMC5428856 | biostudies-literature
| S-EPMC6039472 | biostudies-literature
| S-EPMC9581058 | biostudies-literature
| S-EPMC5231901 | biostudies-literature
| S-EPMC7440617 | biostudies-literature
| S-EPMC7162425 | biostudies-literature
| S-EPMC6334411 | biostudies-literature
| S-EPMC7248114 | biostudies-literature