Comment on Ibrahim et al. The Effects of In-Plane Spatial Resolution on CT-Based Radiomic Features' Stability with and without ComBat Harmonization. Cancers 2021, 13, 1848.
Ontology highlight
ABSTRACT: We read with great interest the paper by Ibrahim et al. [...].
Comment on Ibrahim et al. The Effects of In-Plane Spatial Resolution on CT-Based Radiomic Features' Stability with and without ComBat Harmonization. <i>Cancers</i> 2021, <i>13</i>, 1848.
Project description:While handcrafted radiomic features (HRFs) have shown promise in the field of personalized medicine, many hurdles hinder its incorporation into clinical practice, including but not limited to their sensitivity to differences in acquisition and reconstruction parameters. In this study, we evaluated the effects of differences in in-plane spatial resolution (IPR) on HRFs, using a phantom dataset (n = 14) acquired on two scanner models. Furthermore, we assessed the effects of interpolation methods (IMs), the choice of a new unified in-plane resolution (NUIR), and ComBat harmonization on the reproducibility of HRFs. The reproducibility of HRFs was significantly affected by variations in IPR, with pairwise concordant HRFs, as measured by the concordance correlation coefficient (CCC), ranging from 42% to 95%. The number of concordant HRFs (CCC > 0.9) after resampling varied depending on (i) the scanner model, (ii) the IM, and (iii) the NUIR. The number of concordant HRFs after ComBat harmonization depended on the variations between the batches harmonized. The majority of IMs resulted in a higher number of concordant HRFs compared to ComBat harmonization, and the combination of IMs and ComBat harmonization did not yield a significant benefit. Our developed framework can be used to assess the reproducibility and harmonizability of RFs.
Project description:Radiomic approaches in precision medicine are promising, but variation associated with image acquisition factors can result in severe biases and low generalizability. Multicenter datasets used in these studies are often heterogeneous in multiple imaging parameters and/or have missing information, resulting in multimodal radiomic feature distributions. ComBat is a promising harmonization tool, but it only harmonizes by single/known variables and assumes standardized input data are normally distributed. We propose a procedure that sequentially harmonizes for multiple batch effects in an optimized order, called OPNested ComBat. Furthermore, we propose to address bimodality by employing a Gaussian Mixture Model (GMM) grouping considered as either a batch variable (OPNested + GMM) or as a protected clinical covariate (OPNested - GMM). Methods were evaluated on features extracted with CapTK and PyRadiomics from two public lung computed tomography (CT) datasets. We found that OPNested ComBat improved harmonization performance over standard ComBat. OPNested + GMM ComBat exhibited the best harmonization performance but the lowest predictive performance, while OPNested - GMM ComBat showed poorer harmonization performance, but the highest predictive performance. Our findings emphasize that improved harmonization performance is no guarantee of improved predictive performance, and that these methods show promise for superior standardization of datasets heterogeneous in multiple or unknown imaging parameters and greater generalizability.
Project description:This announcement describes corrections and comments to the paper entitled 'The plastid genome sequence of the invasive plant common Ragweed (Ambrosia artemisiifolia, Asteraceae)' by A Amiryousefi, J Hyvönen, P Poczai.
Project description:Multicenter studies are needed to demonstrate the clinical potential value of radiomics as a prognostic tool. However, variability in scanner models, acquisition protocols and reconstruction settings are unavoidable and radiomic features are notoriously sensitive to these factors, which hinders pooling them in a statistical analysis. A statistical harmonization method called ComBat was developed to deal with the "batch effect" in gene expression microarray data and was used in radiomics studies to deal with the "center-effect". Our goal was to evaluate modifications in ComBat allowing for more flexibility in choosing a reference and improving robustness of the estimation. Two modified ComBat versions were evaluated: M-ComBat allows to transform all features distributions to a chosen reference, instead of the overall mean, providing more flexibility. B-ComBat adds bootstrap and Monte Carlo for improved robustness in the estimation. BM-ComBat combines both modifications. The four versions were compared regarding their ability to harmonize features in a multicenter context in two different clinical datasets. The first contains 119 locally advanced cervical cancer patients from 3 centers, with magnetic resonance imaging and positron emission tomography imaging. In that case ComBat was applied with 3 labels corresponding to each center. The second one contains 98 locally advanced laryngeal cancer patients from 5 centers with contrast-enhanced computed tomography. In that specific case, because imaging settings were highly heterogeneous even within each of the five centers, unsupervised clustering was used to determine two labels for applying ComBat. The impact of each harmonization was evaluated through three different machine learning pipelines for the modelling step in predicting the clinical outcomes, across two performance metrics (balanced accuracy and Matthews correlation coefficient). Before harmonization, almost all radiomic features had significantly different distributions between labels. These differences were successfully removed with all ComBat versions. The predictive ability of the radiomic models was always improved with harmonization and the improved ComBat provided the best results. This was observed consistently in both datasets, through all machine learning pipelines and performance metrics. The proposed modifications allow for more flexibility and robustness in the estimation. They also slightly but consistently improve the predictive power of resulting radiomic models.