Unknown

Dataset Information

0

Translational Attenuation Mechanism of ErmB Induction by Erythromycin Is Dependent on Two Leader Peptides.


ABSTRACT: Ribosome stalling on ermBL at the tenth codon (Asp) is believed to be a major mechanism of ermB induction by erythromycin (Ery). In this study, we demonstrated that the mechanism of ermB induction by Ery depends not only on ermBL expression but also on previously unreported ermBL2 expression. Introducing premature termination codons in ermBL, we proved that translation of the N-terminal region of ermBL is the key component for ermB induced by Ery, whereas translation of the C-terminal region of ermBL did not affect Ery-induced ermB. Mutation of the tenth codon (Asp10) of ermBL with other amino acids showed that the degree of induction in vivo was not completely consistent with the data from the in vitro toe printing assay. Alanine-scanning mutagenesis of ermBL demonstrated that both N-terminal residues (R7-K11) and the latter part of ermBL (K20-K27) are critical for Ery induction of ermB. The frameshifting reporter plasmid showed that a new leader peptide, ermBL2, exists in the ermB regulatory region. Further, introducing premature termination mutation and alanine-scanning mutagenesis of ermBL2 demonstrated that the N-terminus of ermBL2 is essential for induction by Ery. Therefore, the detailed function of ermBL2 requires further study.

SUBMITTER: Wang S 

PROVIDER: S-EPMC8274638 | biostudies-literature | 2021

REPOSITORIES: biostudies-literature

altmetric image

Publications

Translational Attenuation Mechanism of <i>ErmB</i> Induction by Erythromycin Is Dependent on Two Leader Peptides.

Wang Shasha S   Jiang Kai K   Du Xinyue X   Lu Yanli Y   Liao Lijun L   He Zhiying Z   He Weizhi W  

Frontiers in microbiology 20210628


Ribosome stalling on <i>ermBL</i> at the tenth codon (Asp) is believed to be a major mechanism of <i>ermB</i> induction by erythromycin (Ery). In this study, we demonstrated that the mechanism of <i>ermB</i> induction by Ery depends not only on <i>ermBL</i> expression but also on previously unreported <i>ermBL2</i> expression. Introducing premature termination codons in <i>ermBL</i>, we proved that translation of the N-terminal region of <i>ermBL</i> is the key component for <i>ermB</i> induced  ...[more]

Similar Datasets

| S-EPMC9178857 | biostudies-literature
| S-EPMC4133097 | biostudies-literature
| S-EPMC9127955 | biostudies-literature
| S-EPMC3100556 | biostudies-literature
| S-EPMC3697253 | biostudies-literature
| S-EPMC3799897 | biostudies-literature
| S-EPMC1765480 | biostudies-literature
| S-EPMC4217412 | biostudies-literature
| S-EPMC6871337 | biostudies-literature
| S-EPMC8247942 | biostudies-literature