Project description:The key to limiting SARS-CoV-2 spread is to identify virus-infected individuals (both symptomatic and asymptomatic) and isolate them from the general population. Hence, routine weekly testing for SARS-CoV-2 in all asymptomatic (capturing both infected and non-infected) individuals is considered critical in situations where a large number of individuals co-congregate such as schools, prisons, aged care facilities and industrial workplaces. Such testing is hampered by operational issues such as cost, test availability, access to healthcare workers and throughput. We developed the SalivaDirect RT-qPCR assay to increase access to SARS-CoV-2 testing via a low-cost, streamlined protocol using self-collected saliva. To expand the single sample testing protocol, we explored multiple extraction-free pooled saliva testing workflows prior to testing with the SalivaDirect RT-qPCR assay. A pool size of five, with or without heat inactivation at 65 °C for 15 min prior to testing resulted in a positive agreement of 98% and 89%, respectively, and an increased Ct value shift of 1.37 and 1.99 as compared to individual testing of the positive clinical saliva specimens. Applying this shift in Ct value to 316 individual, sequentially collected, SARS-CoV-2 positive saliva specimen results reported from six clinical laboratories using the original SalivaDirect assay, 100% of the samples would have been detected (Ct value < 45) had they been tested in the 1:5 pool strategy. The availability of multiple pooled testing workflows for laboratories can increase test turnaround time, permitting results in a more actionable time frame while minimizing testing costs and changes to laboratory operational flow.
Project description:We evaluated saliva (SAL) specimens for SARS-CoV-2 reverse transcriptase PCR (RT-PCR) testing by comparison of 459 prospectively paired nasopharyngeal (NP) or midturbinate (MT) swabs from 449 individuals with the aim of using saliva for asymptomatic screening. Samples were collected in a drive-through car line for symptomatic individuals (n = 380) and in the emergency department (ED) (n = 69). The percentages of positive and negative agreement of saliva compared to nasopharyngeal swab were 81.1% (95% confidence interval [CI], 65.8% to 90.5%) and 99.8% (95% CI, 98.7% to 100%), respectively. The percent positive agreement increased to 90.0% (95% CI, 74.4% to 96.5%) when considering only samples with moderate to high viral load (cycle threshold [CT ] for the NP, ≤34). Pools of five saliva specimens were also evaluated on three platforms, bioMérieux NucliSENS easyMAG with ABI 7500Fast (CDC assay), Hologic Panther Fusion, and Roche Cobas 6800. The average loss of signal upon pooling was 2 to 3 CT values across the platforms. The sensitivities of detecting a positive specimen in a pool compared with testing individually were 94%, 90%, and 94% for the CDC 2019-nCoV real-time RT-PCR, Panther Fusion SARS-CoV-2 assay, and Cobas SARS-CoV-2 test, respectively, with decreased sample detection trending with lower viral load. We conclude that although pooled saliva testing, as collected in this study, is not quite as sensitive as NP/MT testing, saliva testing is adequate to detect individuals with higher viral loads in an asymptomatic screening program, does not require swabs or viral transport medium for collection, and may help to improve voluntary screening compliance for those individuals averse to various forms of nasal collections.
Project description:We evaluated saliva (SAL) specimens for SARS-CoV-2 RT-PCR testing by comparison of 459 prospectively paired nasopharyngeal (NP) or mid-turbinate (MT) swabs from 449 individuals with the aim of using saliva for asymptomatic screening. Samples were collected in a drive-through car line for symptomatic individuals (N=380) and in the emergency department (ED) (N=69). The percent positive and negative agreement of saliva compared to nasopharyngeal swab were 81.1% (95% CI: 65.8% - 90.5%) and 99.8% (95% CI: 98.7% - 100%), respectively. The sensitivity increased to 90.0% (95% CI: 74.4% - 96.5%) when considering only samples with moderate to high viral load (Cycle threshold (Ct) for the NP <=34). Pools of five saliva specimens were also evaluated on three platforms: bioMérieux NucliSENS easyMAG with ABI 7500Fast (CDC assay), Hologic Panther Fusion, and Roche COBAS 6800. The median loss of signal upon pooling was 2-4 Ct values across the platforms. The sensitivity of detecting a positive specimen in a pool compared with testing individually was 100%, 93%, and 95% for CDC 2019-nCoV Real-Time RT-PCR, Panther Fusion® SARS-CoV-2 assay, and cobas® SARS-CoV-2 test respectively, with decreased sample detection trending with lower viral load. We conclude that although pooled saliva testing, as collected in this study, is not quite as sensitive as NP/MT testing, saliva testing is adequate to detect individuals with higher viral loads in an asymptomatic screening program, does not require swabs or viral transport media for collection, and may help to improve voluntary screening compliance for those individuals averse to various forms of nasal collections.
Project description:We analyzed feasibility of pooling saliva samples for severe acute respiratory syndrome coronavirus 2 testing and found that sensitivity decreased according to pool size: 5 samples/pool, 7.4% reduction; 10 samples/pool, 11.1%; and 20 samples/pool, 14.8%. When virus prevalence is >2.6%, pools of 5 require fewer tests; when <0.6%, pools of 20 support screening strategies.
Project description:SARS-CoV-2 has surged across the globe causing the ongoing COVID-19 pandemic. Systematic testing to facilitate index case isolation and contact tracing is needed for efficient containment of viral spread. The major bottleneck in leveraging testing capacity has been the lack of diagnostic resources. Pooled testing is a potential approach that could reduce cost and usage of test kits. This method involves pooling individual samples and testing them 'en bloc'. Only if the pool tests positive, retesting of individual samples is performed. Upon reviewing recent articles on this strategy employed in various SARS-CoV-2 testing scenarios, we found substantial diversity emphasizing the requirement of a common protocol. In this article, we review various theoretically simulated and clinically validated pooled testing models and propose practical guidelines on applying this strategy for large scale screening. If implemented properly, the proposed approach could contribute to proper utilization of testing resources and flattening of infection curve.
Project description:Throughout the coronavirus disease 2019 (COVID-19) pandemic, government policy and healthcare implementation responses have been guided by reported positivity rates and counts of positive cases in the community. The selection bias of these data calls into question their validity as measures of the actual viral incidence in the community and as predictors of clinical burden. In the absence of any successful public or academic campaign for comprehensive or random testing, we have developed a proxy method for synthetic random sampling, based on viral RNA testing of patients who present for elective procedures within a hospital system. We present here an approach under multilevel regression and poststratification to collecting and analyzing data on viral exposure among patients in a hospital system and performing statistical adjustment that has been made publicly available to estimate true viral incidence and trends in the community. We apply our approach to tracking viral behavior in a mixed urban-suburban-rural setting in Indiana. This method can be easily implemented in a wide variety of hospital settings. Finally, we provide evidence that this model predicts the clinical burden of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) earlier and more accurately than currently accepted metrics. See video abstract at, http://links.lww.com/EDE/B859.
Project description:BackgroundActive detection of SARS-CoV-2 infection through testing is elementary for the control of COVID-19 pandemic. The implementation of large-scale RT-PCR testing has led to a rise in the demand for testing kits whose availability is always a concern.ObjectiveTo find out the feasibility of pooled testing in a high-throughput platform.MethodologyPooled testing was conducted in Roche cobas 6800 in 2 methods. Firstly, the simple two-stage testing algorithm was conducted for 1410 samples individually and then as pooled samples. Secondly, we evaluated the sensitivity of cobas 6800 for the detection of a single positive sample within a pool of negative samples.ResultsImplementing the five-sample Dorfman pooling to test 1410 samples, we identified 42 (2.9%) individual SARS-CoV-2-positive samples and 27 (9.5%) positive pool samples. The pooling strategy precisely identified all the positive samples. All individually negative samples were also accurately determined by pooling. There was 100% sensitivity of detecting positive samples in a pool of negative samples even up to 1:64 dilution. There was a threefold increase in total throughput in one-third of the cost per day.ConclusionA high-throughput platform such as Cobas 6800 can effectively increase the testing capacity by twofold to threefold by adopting the pooled testing strategy for successful management of SARS-CoV-2 and helping in the containment of community transmission.
Project description:Pooled testing has been successfully used to expand SARS-CoV-2 testing, especially in settings requiring high volumes of screening of lower-risk individuals, but efficiency of pooling declines as prevalence rises. We propose a differentiated pooling strategy that independently optimizes pool sizes for distinct groups with different probabilities of infection to further improve the efficiency of pooled testing. We compare the efficiency (results obtained per test kit used) of the differentiated strategy to a traditional pooling strategy in which all samples are processed using uniform pool sizes under a range of scenarios. For most scenarios, differentiated pooling is more efficient than traditional pooling. In scenarios examined here, an improvement in efficiency of up to 3.94 results per test kit could be obtained through differentiated versus traditional pooling, with more likely scenarios resulting in 0.12 to 0.61 additional results per kit. Under circumstances similar to those observed in a university setting, implementation of our strategy could result in an improvement in efficiency between 0.03 to 3.21 results per test kit. Our results can help identify settings, such as universities and workplaces, where differentiated pooling can conserve critical testing resources.
Project description:IntroductionTesting for active SARS-CoV-2 infection is a fundamental tool in the public health measures taken to control the COVID-19 pandemic. Because of the overwhelming use of SARS-CoV-2 reverse transcription (RT)-PCR tests worldwide, the availability of test kits has become a major bottleneck and the need to increase testing throughput is rising. We aim to overcome these challenges by pooling samples together, and performing RNA extraction and RT-PCR in pools.MethodsWe tested the efficiency and sensitivity of pooling strategies for RNA extraction and RT-PCR detection of SARS-CoV-2. We tested 184 samples both individually and in pools to estimate the effects of pooling. We further implemented Dorfman pooling with a pool size of eight samples in large-scale clinical tests.ResultsWe demonstrated pooling strategies that increase testing throughput while maintaining high sensitivity. A comparison of 184 samples tested individually and in pools of eight samples showed that test results were not significantly affected. Implementing the eight-sample Dorfman pooling to test 26 576 samples from asymptomatic individuals, we identified 31 (0.12%) SARS-CoV-2 positive samples, achieving a 7.3-fold increase in throughput.DiscussionPooling approaches for SARS-CoV-2 testing allow a drastic increase in throughput while maintaining clinical sensitivity. We report the successful large-scale pooled screening of asymptomatic populations.