Project description:Despite the formation of biofilms on catheters for extracorporeal membrane oxygenation (ECMO), some patients do not show bacteremia. To elucidate the specific linkage between biofilms and bacteremia in patients with ECMO, an improved understanding of the microbial community within catheter biofilms is necessary. Hence, we aimed to evaluate the biofilm microbiome of ECMO catheters from adults with (n = 6) and without (n = 15) bacteremia. The microbiomes of the catheter biofilms were evaluated by profiling the V3 and V4 regions of bacterial 16s rRNA genes using the Illumina MiSeq sequencing platform. In total, 2,548,172 reads, with an average of 121,341 reads per sample, were generated. Although alpha diversity was slightly higher in the non-bacteremic group, the difference was not statistically significant. In addition, there was no difference in beta diversity between the two groups. We found 367 different genera, of which 8 were present in all samples regardless of group; Limnohabitans, Flavobacterium, Delftia, Massilia, Bacillus, Candidatus, Xiphinematobacter, and CL0-1 showed an abundance of more than 1% in the sample. In particular, Arthrobacter, SMB53, Neisseria, Ortrobactrum, Candidatus Rhabdochlamydia, Deefgae, Dyella, Paracoccus, and Pedobacter were highly abundant in the bacteremic group. Network analysis indicated that the microbiome of the bacteremic group was more complex than that of the non-bacteremic group. Flavobacterium and CL0.1, which were abundant in the bacteremic group, were considered important genera because they connected different subnetworks. Biofilm characteristics in ECMO catheters varied according to the presence or absence of bacteremia. There were no significant differences in diversity between the two groups, but there were significant differences in the community composition of the biofilms. The biofilm-associated community was dynamic, with the bacteremic group showing very complex network connections within the microbiome.
Project description:BackgroundThe continuous exposure of blood to a non-biological surface during extracorporeal membrane oxygenation (ECMO) may lead to progressive thrombus formation in the oxygenator, hemolysis and consequently impaired gas exchange. In most centers oxygenator performance is monitored only on a once daily basis. Carboxyhemoglobin (COHb) is generated upon red cell lysis and is routinely measured with any co-oximetry performed to surveille gas exchange and acid-base homeostasis every couple of hours. This retrospective cohort study aims to evaluate COHb in the arterial blood gas as a novel marker of oxygenator dysfunction and its predictive value for imminent oxygenator change.ResultsOut of the 484 screened patients on ECMO 89, cumulatively requiring 116 oxygenator changes within 1833 patient days, including 19,692 arterial COHb measurements were analyzed. Higher COHb levels were associated with lower post-oxygenator pO2 (estimate for log(COHb): - 2.176 [95% CI - 2.927, - 1.427], p < 0.0001) and with a shorter time to oxygenator change (estimate for log(COHb): - 67.895 [95% CI - 74.209, - 61.542] hours, p < 0.0001). COHb was predictive of oxygenator change within 6 h (estimate for log(COHb): 5.027 [95% CI 1.670, 15.126], p = 0.004).ConclusionCOHb correlates with oxygenator performance and can be predictive of imminent oxygenator change. Therefore, longitudinal measurements of COHb in clinical routine might be a cheap and more granular candidate for ECMO surveillance that should be further analyzed in a controlled prospective trial design.
Project description:BackgroundExposure to hyperoxia, a high arterial partial pressure of oxygen (PaO2), may be associated with worse outcomes in patients receiving extracorporeal membrane oxygenator (ECMO) support. We examined hyperoxia in the Extracorporeal Life Support Organization Registry among patients receiving venoarterial ECMO for cardiogenic shock.MethodsWe included Extracorporeal Life Support Organization Registry patients from 2010 to 2020 who received venoarterial ECMO for cardiogenic shock, excluding extracorporeal CPR. Patients were grouped based on PaO2 after 24 hours of ECMO: normoxia (PaO2 60-150 mmHg), mild hyperoxia (PaO2 151-300 mmHg), and severe hyperoxia (PaO2 >300 mmHg). In-hospital mortality was evaluated using multivariable logistic regression.ResultsAmong 9959 patients, 3005 (30.2%) patients had mild hyperoxia and 1972 (19.8%) had severe hyperoxia. In-hospital mortality increased across groups: normoxia, 47.8%; mild hyperoxia, 55.6% (adjusted odds ratio, 1.37 [95% CI, 1.23-1.53]; P<0.001); severe hyperoxia, 65.4% (adjusted odds ratio, 2.20 [95% CI, 1.92-2.52]; P<0.001). A higher PaO2 was incrementally associated with increased in-hospital mortality (adjusted odds ratio, 1.14 per 50 mmHg higher [95% CI, 1.12-1.16]; P<0.001). Patients with a higher PaO2 had increased in-hospital mortality in each subgroup and when stratified by ventilator settings, airway pressures, acid-base status, and other clinical variables. In the random forest model, PaO2 was the second strongest predictor of in-hospital mortality, after older age.ConclusionsExposure to hyperoxia during venoarterial ECMO support for cardiogenic shock is strongly associated with increased in-hospital mortality, independent from hemodynamic and ventilatory status. Until clinical trial data are available, we suggest targeting a normal PaO2 and avoiding hyperoxia in CS patients receiving venoarterial ECMO.
Project description:BackgroundArteriotomy repair through the preclosure technique during elective arterial access procedures is well documented. Outcomes associated with application of this technique to the removal of arterial access cannulas in patients undergoing urgent venoarterial extracorporeal membrane oxygenation (VA-ECMO) have not previously been reported.MethodsWe reviewed the records of consecutive patients who required VA-ECMO for cardiogenic shock. Patients were compared by use of the preclosure device (Perclose ProGlide Suture-Mediated Closure System; Abbott Vascular, Abbott Park, Ill) at time of VA-ECMO cannulation. The rate of limb complications (composite of limb ischemia, infection, and site necrosis) and secondary end points of bleeding events, pseudoaneurysm, distal part embolization, and intensive care unit length of stay after decannulation were compared between the groups.ResultsNinety-nine consecutive patients managed with VA-ECMO were identified and the preclosure device was utilized in 51 of these patients. Preclosure device failure occurred in 5 instances (9.8%) and was successfully managed with surgical repair in 4 cases and endovascular intervention in another. Use of the preclosure device was associated with both fewer limb complications (odds ratio, 0.19; 95% confidence interval, 0.03-0.78) and bleeding events (odds ratio, 0.21; 95% confidence interval, 0.04-0.89). Pseudoaneurysm (n = 0) and distal part embolization (n = 1) were infrequently encountered in the cohort and no difference in intensive care unit length of stay after decannulation was noted between the groups.ConclusionsIn this cohort, use of the preclosure technique in weaning from VA-ECMO was technically feasible, safe, and associated with an approximate 80% lower likelihood of limb complications and bleeding events compared with surgical removal.
Project description:Towards the establishment of a long-term lung-assist device to be used both as a bridge and as an alternative to lung transplantation according to final destination therapy, we develop the biohybrid lung (BHL) on the technical basis of contemporary extracorporeal membrane oxygenation (ECMO). Here, to overcome the significant drawbacks of ECMO, in particular the missing hemocompatibility of the artificial surfaces, all blood-contacting areas need to be endothelialized sufficiently. In continuation of our recent accomplishments, demonstrating the feasibility of establishing a physiological acting endothelial cell (EC) monolayer on the hollow fiber membranes (HFMs) of the ECMO in vitro, the next step towards BHL translation is the endothelialization of the complete oxygenator, consisting of HFMs and the surrounding housing. Therefore, we assessed EC seeding inside our model oxygenator (MOx), which simulated the conditions in the assembled HFM oxygenators in order to identify the most important factors influencing efficient endothelialization, such as cell seeding density, cell distribution, incubation time and culture medium consumption. Overall, upon adjusting the concentration of infused ECs to 15.2 × 104/cm2 and ensuring optimal dispersion of cells in the MOx, viable and confluent EC monolayers formed on all relevant surfaces within 24 h, even though they comprised different polymers, i.e., the fibronectin-coated HFMs and the polysulfone MOx housing. Periodic medium change ensured monolayer survival and negligible apoptosis rates comparable to the reference within the assembled system. By means of these results, revealing essential implications for BHL development, their clinical translation is coming one step closer to reality.
Project description:BackgroundExtracorporeal membrane oxygenation (ECMO) is an effective extracorporeal life support technology that has been applied to treat cardiorespiratory failure patients. Some medical centers have started using ECMO on awake, non-intubated, spontaneously breathing patients, as this strategy offers several benefits over mechanical ventilation. However, most awake-ECMO methods focus on venovenous ECMO, and few cases of awake veno-arterial ECMO (V-A ECMO) have been reported, especially in perioperative acute heart failure. Therefore, our study aimed to examine awake-V-A ECMO cases that were not given continuous sedation or invasive mechanical ventilation (IMV) during perioperative heart failure.MethodIn total, 40 ECMO patients from December 2013 to November 2019 were divided into 2 groups (the awake-ECMO group and the asleep-ECMO group) according to the ventilation use. The demographics, patient outcomes, and ECMO parameters were collected and retrospectively analyzed.ResultsWe identified 12 cases of awake ECMO without continuous ventilation, and 28 cases of simultaneous IMV and ECMO (asleep ECMO). Awake-ECMO patients showed fewer complications and better outcomes compared to ventilation patients. All patients in the awake group were successfully weaned off ECMO, while only 5 (18%) patients were weaned off ECMO in the asleep group. Furthermore, 9 (75%) patients survived until discharge in the awake group vs. 3 (11%) in the asleep group; 3 patients died of septic shock after weaning in the awake group, while 25 patients died of septic shock, hemodynamic disorder, bleeding, cerebral hemorrhage, etc., in the asleep group. These complications, including bleeding, pneumonia, hemolysis, and abdominal distension, etc., occurred less frequently in the asleep group compared to the awake group (P<0.05).ConclusionsAwake V-A ECMO is an effective, feasible, and safe strategy in patients with perioperatively acute heart failure and can be applied as a bridge to cardiac function recovery or transplantation.
Project description:ObjectiveTo evaluate the safety and efficacy of the area reduction post-closure technique for bedside weaning of veno-arterial extracorporeal membrane oxygenation (V-A ECMO).MethodsA retrospective study was conducted from December 2022 to November 2023, analyzing data from patients who underwent V-A ECMO weaning at our center. The area reduction post-closure technique, utilizing two ProGlide devices (Abbott Vascular, Santa Clara, CA), was adopted as a standard practice. The technical success was defined as achieving complete hemostasis without a bailout open repair. The complications associated with access included hemorrhagic events, pseudoaneurysm formation, limb ischemia, distal embolization, and wound infections.ResultsA total of 18 patients were included. The median age of the cohort was 72.0 years [interquartile range (IQR), 57.5-81.5 years], with a male-to-female ratio of 2:1. The median size of arterial sheath utilized was 18.0 Fr (IQR, 17.0-20.0 Fr). The median duration of the procedure was 10.0 min (IQR, 9.0-13.0 min), and the median length of total hospital stay was 31.0 days (IQR, 25.5-39.0 days). Furthermore, the technique demonstrated a success rate of 100%. One patient (5.6%) experienced minor bleeding, which was successfully managed through compression. No additional complications associated with access were observed after the procedure.ConclusionsThe post-closure area reduction technique emerges as a viable option for bedside weaning of V-A ECMO. Nonetheless, it is essential that this technique be validated through larger comparative studies.