Ontology highlight
ABSTRACT:
SUBMITTER: Gleichgerrcht E
PROVIDER: S-EPMC8346685 | biostudies-literature | 2021
REPOSITORIES: biostudies-literature
Gleichgerrcht Ezequiel E Munsell Brent C BC Alhusaini Saud S Alvim Marina K M MKM Bargalló Núria N Bender Benjamin B Bernasconi Andrea A Bernasconi Neda N Bernhardt Boris B Blackmon Karen K Caligiuri Maria Eugenia ME Cendes Fernando F Concha Luis L Desmond Patricia M PM Devinsky Orrin O Doherty Colin P CP Domin Martin M Duncan John S JS Focke Niels K NK Gambardella Antonio A Gong Bo B Guerrini Renzo R Hatton Sean N SN Kälviäinen Reetta R Keller Simon S SS Kochunov Peter P Kotikalapudi Raviteja R Kreilkamp Barbara A K BAK Labate Angelo A Langner Soenke S Larivière Sara S Lenge Matteo M Lui Elaine E Martin Pascal P Mascalchi Mario M Meletti Stefano S O'Brien Terence J TJ Pardoe Heath R HR Pariente Jose C JC Xian Rao Jun J Richardson Mark P MP Rodríguez-Cruces Raúl R Rüber Theodor T Sinclair Ben B Soltanian-Zadeh Hamid H Stein Dan J DJ Striano Pasquale P Taylor Peter N PN Thomas Rhys H RH Elisabetta Vaudano Anna A Vivash Lucy L von Podewills Felix F Vos Sjoerd B SB Weber Bernd B Yao Yi Y Lin Yasuda Clarissa C Zhang Junsong J Thompson Paul M PM Sisodiya Sanjay M SM McDonald Carrie R CR Bonilha Leonardo L
NeuroImage. Clinical 20210724
Artificial intelligence has recently gained popularity across different medical fields to aid in the detection of diseases based on pathology samples or medical imaging findings. Brain magnetic resonance imaging (MRI) is a key assessment tool for patients with temporal lobe epilepsy (TLE). The role of machine learning and artificial intelligence to increase detection of brain abnormalities in TLE remains inconclusive. We used support vector machine (SV) and deep learning (DL) models based on reg ...[more]