Atomically dispersed Fe atoms anchored on S and N-codoped carbon for efficient electrochemical denitrification.
Ontology highlight
ABSTRACT: Nitrate, a widespread contaminant in natural water, is a threat to ecological safety and human health. Although direct nitrate removal by electrochemical methods is efficient, the development of low-cost electrocatalysts with high reactivity remains challenging. Herein, bifunctional single-atom catalysts (SACs) were prepared with Cu or Fe active centers on an N-doped or S, N-codoped carbon basal plane for N2 or NH4+ production. The maximum nitrate removal capacity was 7,822 mg N ⋅ g-1 Fe, which was the highest among previous studies. A high ammonia Faradic efficiency (78.4%) was achieved at a low potential (-0.57 versus reversible hydrogen electrode), and the nitrogen selectivity was 100% on S-modified Fe SACs. Theoretical and experimental investigations of the S-doping charge-transfer effect revealed that strong metal-support interactions were beneficial for anchoring single atoms and enhancing cyclability. S-doping altered the coordination environment of single-atom centers and created numerous defects with higher conductivity, which played a key role in improving the catalyst activity. Moreover, interactions between defects and single-atom sites improved the catalytic performance. Thus, these findings offer an avenue for high active SAC design.
SUBMITTER: Li J
PROVIDER: S-EPMC8379959 | biostudies-literature | 2021 Aug
REPOSITORIES: biostudies-literature
ACCESS DATA