Project description:Lafora body disease (MIM-254780), a glycogen storage disease, characterized by Lafora bodies (deformed glycogen molecules) accumulating in multiple organs, is a rare form of myoclonic epilepsy. It manifests in early adolescent years, initially with seizures and myoclonus, followed by dementia and progressive cognitive decline, ultimately culminating in death within 10 years. In Pakistan so far 5 cases have been reported. Here, we report a new case of Lafora body disease belonging to a consanguineous family from Pakistan. Histopathological analysis confirmed presence of lafora bodies in the patient`s skin. Sanger sequencing revealed novel homozygous 5bp deletion mutation (NM_005670.4; c.359_363delGTGTG) in exon 2 of the EPM2A gene, which was truly segregated in the family. These results will increase our understanding regarding the aetiology of this disorder and will further add to the mutation spectrum of EPM2A gene.
Project description:Lafora disease (LD, OMIM 254780) is a rare disorder characterized by epilepsy and neurodegeneration leading patients to a vegetative state and death, usually within the first decade from the onset of the first symptoms. In the vast majority of cases LD is related to mutations in either the EPM2A gene (encoding the glucan phosphatase laforin) or the EPM2B gene (encoding the E3-ubiquitin ligase malin). In this work, we characterize the mutations present in the EPM2A gene in a patient displaying a slow progression form of the disease. The patient is compound heterozygous with Y112X and N163D mutations in the corresponding alleles. In primary fibroblasts obtained from the patient, we analyzed the expression of the mutated alleles by quantitative real time PCR and found slightly lower levels of expression of the EPM2A gene respect to control cells. However, by Western blotting we were unable to detect endogenous levels of the protein in crude extracts from patient fibroblasts. The Y112X mutation would render a truncated protein lacking the phosphatase domain and likely degraded. Since minute amounts of laforin-N163D might still play a role in cell physiology, we analyzed the biochemical characteristics of the N163D mutation. We found that recombinant laforin N163D protein was as stable as wild type and exhibited near wild type phosphatase activity towards biologically relevant substrates. On the contrary, it showed a severe impairment in the interaction profile with previously identified laforin binding partners. These results lead us to conclude that the slow progression of the disease present in this patient could be either due to the specific biochemical properties of laforin N163D or to the presence of alternative genetic modifying factors separate from pathogenicity.
Project description:Aim: To develop novel cationic liposomes as a nonviral gene delivery vector for the treatment of rare diseases, such as Lafora disease - a neurodegenerative epilepsy. Materials & methods: DLinDMA and DOTAP liposomes were formulated and characterized for the delivery of gene encoding laforin and expression of functional protein in HEK293 and neuroblastoma cells. Results: Liposomes with cationic lipids DLinDMA and DOTAP showed good physicochemical characteristics. Nanosized DLinDMA liposomes demonstrated desired transfection efficiency, negligible hemolysis and minimal cytotoxicity. Western blotting confirmed successful expression and glucan phosphatase assay demonstrated the biological activity of laforin. Conclusion: Our study is a novel preclinical effort in formulating cationic lipoplexes containing plasmid DNA for the therapy of rare genetic diseases such as Lafora disease.
Project description:Lafora disease is a fatal form of progressive myoclonic epilepsy caused by mutations in the EPM2A or NHLRC1/EPM2B genes that usually appears during adolescence. The Epm2a-/- and Epm2b-/- knock-out mouse models of the disease develop behavioral and neurological alterations similar to those observed in patients. The aim of this work is to analyze whether early treatment with metformin (from conception to adulthood) ameliorates the formation of Lafora bodies and improves the behavioral and neurological outcomes observed with late treatment (during 2 months at 10 months of age). We also evaluated the benefits of metformin in patients with Lafora disease. To assess neurological improvements due to metformin administration in the two mouse models, we evaluated the effects on pentylenetetrazol sensitivity, posturing, motor coordination and activity, and memory. We also analyzed the effects on Lafora bodies, neurodegeneration, and astrogliosis. Furthermore, we conducted a follow-up study of an initial cohort of 18 patients with Lafora disease, 8 treated with metformin and 10 untreated. Our results indicate that early metformin was more effective than late metformin in Lafora disease mouse models improving neurological alterations of both models such as neuronal hyperexcitability, motor and memory alterations, neurodegeneration, and astrogliosis and decreasing the formation of Lafora bodies. Moreover, patients receiving metformin had a slower progression of the disease. Overall, early treatment improves the outcome seen with late metformin treatment in the two knock-out mouse models of Lafora disease. Metformin-treated patients exhibited an ameliorated course of the disease with slower deterioration of their daily living activities.
Project description:ObjectiveTo assess the clinical effect of caudate-putaminal transplantation of fetal striatal tissue in Huntington's disease (HD).MethodsWe carried out a follow-up study on 10 HD transplanted patients and 16 HD not-transplanted patients. All patients were evaluated with the Unified HD Rating Scale (UHDRS) whose change in motor, cognitive, behavioural and functional capacity total scores were considered as outcome measures. Grafted patients also received morphological and molecular neuroimaging.ResultsPatients were followed-up from disease onset for a total of 309.3 person-years (minimum 5.3, median 11.2 years, maximum 21.6 years). UHDRS scores have been available since 2004 (median time of 5.7 years since onset, minimum zero, maximum 17.2 years). Median post-transplantation follow-up was 4.3 years, minimum 2.8, maximum 5.1 years. Adjusted post-transplantation motor score deterioration rate was reduced compared to the pretransplantation period, and to that of not-transplanted patients by 0.9 unit/years (95% CI 0.2 to 1.6). Cognitive score deterioration was reduced of 2.7 unit/years (95% CI 0.1 to 5.3). For grafted patients the 2-year post-transplantation [(18)F]fluorodeoxyglucose positron emission tomography (PET) showed striatal/cortical metabolic increase compared to the presurgical evaluation; 4-year post-transplantation PET values were slightly decreased, but remained higher than preoperatively. [(123)I]iodobenzamide single photon emission CT demonstrated an increase in striatal D2-receptor density during postgrafting follow-up.ConclusionsGrafted patients experienced a milder clinical course with less pronounced motor/cognitive decline and associated brain metabolism improvement. Life-time follow-up may ultimately clarify whether transplantation permanently modifies the natural course of the disease, allowing longer sojourn time at less severe clinical stage, and improvement of overall survival.
Project description:Lafora disease (LD) is an autosomal recessive progressive myoclonus epilepsy due to mutations in the EPM2A (laforin) and EPM2B (malin) genes, with no substantial genotype-phenotype differences between the two. Founder effects and recurrent mutations are common, and mostly isolated to specific ethnic groups and/or geographical locations. Pathologically, LD is characterized by distinctive polyglucosans, which are formations of abnormal glycogen. Polyglucosans, or Lafora bodies (LB) are typically found in the brain, periportal hepatocytes of the liver, skeletal and cardiac myocytes, and in the eccrine duct and apocrine myoepithelial cells of sweat glands. Mouse models of the disease and other naturally occurring animal models have similar pathology and phenotype. Hypotheses of LB formation remain controversial, with compelling evidence and caveats for each hypothesis. However, it is clear that the laforin and malin functions regulating glycogen structure are key. With the exception of a few missense mutations LD is clinically homogeneous, with onset in adolescence. Symptoms begin with seizures, and neurological decline follows soon after. The disease course is progressive and fatal, with death occurring within 10 years of onset. Antiepileptic drugs are mostly non-effective, with none having a major influence on the progression of cognitive and behavioral symptoms. Diagnosis and genetic counseling are important aspects of LD, and social support is essential in disease management. Future therapeutics for LD will revolve around the pathogenesics of the disease. Currently, efforts at identifying compounds or approaches to reduce brain glycogen synthesis appear to be highly promising.
Project description:IntroductionThe Mediterranean and dash diets have been shown to slow cognitive decline; however, neither diet is specific to the nutrition literature on dementia prevention.MethodsWe devised the Mediterranean-Dietary Approach to Systolic Hypertension (DASH) diet intervention for neurodegenerative delay (MIND) diet score that specifically captures dietary components shown to be neuroprotective and related it to change in cognition over an average 4.7 years among 960 participants of the Memory and Aging Project.ResultsIn adjusted mixed models, the MIND score was positively associated with slower decline in global cognitive score (β = 0.0092; P < .0001) and with each of five cognitive domains. The difference in decline rates for being in the top tertile of MIND diet scores versus the lowest was equivalent to being 7.5 years younger in age.DiscussionThe study findings suggest that the MIND diet substantially slows cognitive decline with age. Replication of these findings in a dietary intervention trial would be required to verify its relevance to brain health.
Project description:Alzheimer's disease (AD), currently the single leading cause of death still on the rise, almost always coexists alongside vascular cognitive impairment (VCI). In fact, the ischemic disease affects up to 90% of AD patients, with strokes and major infarctions representing over a third of vascular lesions. Studies also confirmed that amyloid plaques, typical of AD, are much more likely to cause dementia if strokes or cerebrovascular damage also exist, leading to the term "mixed pathology" cognitive impairment. Although its incidence is expected to grow, there are no satisfactory treatments. There is hence an urgent need for safe and effective therapies that preserve cognition, maintain function, and prevent the clinical deterioration that results from the progression of this irreversible, neurodegenerative disease. To our knowledge, this is the first study to investigate the effects of long-term treatment with C21, a novel angiotensin II type 2 receptor (AT2R) agonist, on the development of "mixed pathology" cognitive impairment. This was accomplished using a unique model that employs the fundamental elements of both AD and VCI. Treatment with C21/vehicle was started 1 h post-stroke and continued for 5 weeks in mice with concurrent AD pathology. Efficacy was established through a series of functional tests assessing various aspects of cognition, including spatial learning, short-term/working memory, long-term/reference memory, and cognitive flexibility, in addition to the molecular markers characteristic of AD. Our findings demonstrate that C21 treatment preserves cognitive function, maintains cerebral blood flow, and reduces Aβ accumulation and toxic tau phosphorylation in AD animals post-stroke.
Project description:Dysregulation of glutamatergic neural circuits has been implicated in a cycle of toxicity, believed among the neurobiological underpinning of Alzheimer's disease. Previously, we reported preclinical evidence that the glutamate modulator riluzole, which is FDA approved for the treatment of amyotrophic lateral sclerosis, has potential benefits on cognition, structural and molecular markers of ageing and Alzheimer's disease. The objective of this study was to evaluate in a pilot clinical trial, using neuroimaging biomarkers, the potential efficacy and safety of riluzole in patients with Alzheimer's disease as compared to placebo. A 6-month phase 2 double-blind, randomized, placebo-controlled study was conducted at two sites. Participants consisted of males and females, 50 to 95 years of age, with a clinical diagnosis of probable Alzheimer's disease, and Mini-Mental State Examination between 19 and 27. Ninety-four participants were screened, 50 participants who met inclusion criteria were randomly assigned to receive 50 mg riluzole (n = 26) or placebo (n = 24) twice a day. Twenty-two riluzole-treated and 20 placebo participants completed the study. Primary end points were baseline to 6 months changes in (i) cerebral glucose metabolism as measured with fluorodeoxyglucose-PET in prespecified regions of interest (hippocampus, posterior cingulate, precuneus, lateral temporal, inferior parietal, frontal); and (ii) changes in posterior cingulate levels of the neuronal viability marker N-acetylaspartate as measured with in vivo proton magnetic resonance spectroscopy. Secondary outcome measures were neuropsychological testing for correlation with neuroimaging biomarkers and in vivo measures of glutamate in posterior cingulate measured with magnetic resonance spectroscopy as a potential marker of target engagement. Measures of cerebral glucose metabolism, a well-established Alzheimer's disease biomarker and predictor of disease progression, declined significantly less in several prespecified regions of interest with the most robust effect in posterior cingulate, and effects in precuneus, lateral temporal, right hippocampus and frontal cortex in riluzole-treated participants in comparison to the placebo group. No group effect was found in measures of N-acetylaspartate levels. A positive correlation was observed between cognitive measures and regional cerebral glucose metabolism. A group × visit interaction was observed in glutamate levels in posterior cingulate, potentially suggesting engagement of glutamatergic system by riluzole. In vivo glutamate levels positively correlated with cognitive performance. These findings support our main primary hypothesis that cerebral glucose metabolism would be better preserved in the riluzole-treated group than in the placebo group and provide a rationale for more powered, longer duration studies of riluzole as a potential intervention for Alzheimer's disease.
Project description:Here, we describe affected members of a 2-generation family with a Stargardt disease-like phenotype caused by a 2-base pair deletion insertion, c.1014_1015delGAinsCT;p.(Trp338_Asn339delinsCysTyr), in BEST1. The variant was identified by whole-exome sequencing, and its pathogenicity was verified through chloride channel recording using WT and transfected mutant HEK293 cells. Clinical examination of both patients revealed similar phenotypes at 2 different disease stages that were attributable to differences in their age at presentation. Hyperautofluorescent flecks along the arcades were observed in the proband, while the affected mother exhibited more advanced retinal pigment epithelium (RPE) loss in the central macula. Full-field electroretinogram testing was unremarkable in the daughter; however, moderate attenuation of generalized cone function was detected in the mother. Results from electrooculogram testing in the daughter were consistent with widespread dysfunction of the RPE characteristic of Best disease. Whole-cell patch-clamp recordings revealed a statistically significant decrease in chloride conductance of the mutant compared with WT cells. This report on a mother and daughter with a BEST1 genotype that phenocopies Stargardt disease broadens the clinical spectrum of BEST1-associated retinopathy.