Unknown

Dataset Information

0

Neuronal Avalanches Across the Rat Somatosensory Barrel Cortex and the Effect of Single Whisker Stimulation.


ABSTRACT: Since its first experimental signatures, the so called "critical brain hypothesis" has been extensively studied. Yet, its actual foundations remain elusive. According to a widely accepted teleological reasoning, the brain would be poised to a critical state to optimize the mapping of the noisy and ever changing real-world inputs, thus suggesting that primary sensory cortical areas should be critical. We investigated whether a single barrel column of the somatosensory cortex of the anesthetized rat displays a critical behavior. Neuronal avalanches were recorded across all cortical layers in terms of both multi-unit activities and population local field potentials, and their behavior during spontaneous activity compared to the one evoked by a controlled single whisker deflection. By applying a maximum likelihood statistical method based on timeseries undersampling to fit the avalanches distributions, we show that neuronal avalanches are power law distributed for both multi-unit activities and local field potentials during spontaneous activity, with exponents that are spread along a scaling line. Instead, after the tactile stimulus, activity switches to a transient across-layers synchronization mode that appears to dominate the cortical representation of the single sensory input.

SUBMITTER: Mariani B 

PROVIDER: S-EPMC8435673 | biostudies-literature | 2021

REPOSITORIES: biostudies-literature

altmetric image

Publications

Neuronal Avalanches Across the Rat Somatosensory Barrel Cortex and the Effect of Single Whisker Stimulation.

Mariani Benedetta B   Nicoletti Giorgio G   Bisio Marta M   Maschietto Marta M   Oboe Roberto R   Leparulo Alessandro A   Suweis Samir S   Vassanelli Stefano S  

Frontiers in systems neuroscience 20210830


Since its first experimental signatures, the so called "critical brain hypothesis" has been extensively studied. Yet, its actual foundations remain elusive. According to a widely accepted teleological reasoning, the brain would be poised to a critical state to optimize the mapping of the noisy and ever changing real-world inputs, thus suggesting that primary sensory cortical areas should be critical. We investigated whether a single barrel column of the somatosensory cortex of the anesthetized r  ...[more]

Similar Datasets

| S-EPMC5384673 | biostudies-literature
| S-EPMC2652198 | biostudies-literature
| S-EPMC8241226 | biostudies-literature
| S-EPMC3070309 | biostudies-literature
| S-EPMC9047904 | biostudies-literature
| S-EPMC9250522 | biostudies-literature
| S-EPMC5121329 | biostudies-literature
| S-EPMC9201598 | biostudies-literature
| S-EPMC2071938 | biostudies-literature
| S-EPMC3070316 | biostudies-literature