Project description:To improve the curing reaction rate and efficiency of sulfur-cured diene-based rubbers, the introduction of some chemical compounds as activators and accelerants is inevitably required, causing potential harm to humans and ecological systems. Moreover, silica is usually employed as a green filling material for rubber reinforcement, and a silane coupling agent is always required to improve its dispersion. Herein, we reported an effective method to cure hydroxyl-functionalized rubbers/silica composites with blocked polyisocyanates, avoiding the use of any other additives. The enhanced dispersion of silica by interaction with hydroxyl groups on molecular chains endowed the composites with high-mechanical performance. The mechanical properties and crosslinking kinetics of the resultant silica composites can be regulated by adjusting the content of hydroxyl groups in the rubber, as well as the amount of the blocked polyisocyanates. The dynamic heat build-up was related to the distance between crosslinking points. A SBROH/B-TDI/silica composite prepared with blocked toluene diisocyanatem (TDI) exhibited comparable tanδ (0.21 at 0 °C and 0.11 at 60 °C) to that of silica composites cured by sulfur with the help of a silane coupling agent (SBR/S/Si69/silica, 0.18 and 0.10), suggesting great applicable potential for new tire rubber compounds.
Project description:Studies have shown that the incorporation of fluorine into materials can improve their properties, but C-F bonds are not readily formed in nature. Although some researchers have studied the reaction of fluorinating alkenes catalyzed by hypervalent iodine, far too little attention has been paid to its reaction mechanism. This study aimed to explore the mechanism of the hypervalent iodine-catalyzed 1,4-difluorination of dienes. We found that the catalyst is favorable for the activation of C1=C2 double bonds through halogen bonds, and then two HFs interact with one F atom in the catalyst via hydrogen bonds, resulting in the cleavage of I-F bonds and the formation of [F-H∙∙∙F]-. Subsequently, the catalyst interacts with C1, and the roaming [F-H···F]- attacks C4 from the opposite side of the catalyst. After the fluorination step is completed, the nucleophile F- substitutes the catalyst via the SN2 mechanism. Our calculations demonstrated that the interaction between HF and F- is favorable for the stabilization of the transition state within the fluorination process for which the presence of two HFs in the reaction is the best. We also observed that [F-H∙∙∙F]- attacking C4 from the opposite side of the catalyst is more advantageous than attacking from the same side. This study therefore offers a novel perspective on the mechanism of the hypervalent iodine-catalyzed fluoridation of dienes.
Project description:Thermoplastic elastomer vulcanizate (TPV) and liquid silicone rubber (LSR) are replacement candidates for ethylene-propylene-diene rubbers (EPDM), as they offer the possibility for two-component injection moulding. In this study, these material types were compared side by side in cyclic compression tests. The materials were also characterized to provide details on the formulations. Compared to the rubbers, the TPV had higher compression set (after a given cycle) and hysteresis loss, and a stronger Mullins effect. This is due to the thermoplastic matrix in the TPV. The LSR had lower compression set (after a given cycle) than the EPDM, but stronger Mullins effect and higher relative hysteresis loss. These differences between the LSR and the EPDM are likely due to differences in polymer network structure and type of filler. Methods for quantifying the Mullins effect are proposed, and correlations between a Mullins index and parameters such as compression set are discussed. The EPDMs showed a distinct trend in compression set, relative hysteresis loss and relaxed stress fraction vs. strain amplitude; these entities were almost independent of strain amplitude in the range 15-35%, while they increased in this range for the TPV and the LSR. The difference between the compression set values of the LSR and the EPDM decreased with increasing strain amplitude and increasing strain recovery time.
Project description:Red blood cells (RBCs) are the most abundant cell type in the blood, and play a critical role in oxygen transport. With the development of nanobiotechnology and synthetic biology, scientists have found multiple ways to take advantage of the characteristics of RBCs, such as their long circulation time, to construct universal RBCs, develop drug delivery systems, and transform cell therapies for cancer and other diseases. This article reviews the component and aging mystery of RBCs, the methods for the applied universal RBCs, and the application prospects of RBCs, such as the engineering modification of RBCs used in cytopharmaceuticals for drug delivery and immunotherapy. Finally, we summarize some perspectives on the biological features of RBCs and provide further insights into translational medicine.
Project description:BackgroundAdequate iodine intake is essential for growing children, as both deficient and excessive iodine status can result in thyroid dysfunction. We investigated the iodine status and its association with thyroid function in 6-year-old children from South Korea.MethodsA total of 439 children aged 6 (231 boys and 208 girls) were investigated from the Environment and Development of Children cohort study. The thyroid function test included free thyroxine (FT4), total triiodothyronine (T3), and thyroid-stimulating hormone (TSH). Urine iodine status was evaluated using urine iodine concentration (UIC) in morning spot urine and categorized into iodine deficient (< 100 μg/L), adequate (100-199 μg/L), more than adequate (200-299 μg/L), mild excessive (300-999 μg/L), and severe excessive (≥ 1000 μg/L) groups. The estimated 24-hour urinary iodine excretion (24h-UIE) was also calculated.ResultsThe median TSH level was 2.3 μIU/mL, with subclinical hypothyroidism detected in 4.3% of patients without sex differences. The median UIC was 606.2 μg/L, with higher levels in boys (684 μg/L vs. 545 μg/L, p = 0.021) than girls. Iodine status was categorized as deficient (n = 19, 4.3%), adequate (n = 42, 9.6%), more than adequate (n = 54, 12.3%), mild excessive (n = 170, 38.7%), or severe excessive (n = 154, 35.1%). After adjusting for age, sex, birth weight, gestational age, body mass index z-score, and family history, both the mild and severe excess groups showed lower FT4 (β = - 0.04, p = 0.032 for mild excess; β = - 0.04, p = 0.042 for severe excess) and T3 levels (β = - 8.12, p = 0.009 for mild excess; β = - 9.08, p = 0.004 for severe excess) compared to the adequate group. Log-transformed estimated 24h-UIE showed a positive association with log-transformed TSH levels (β = 0.04, p = 0.046).ConclusionExcess iodine was prevalent (73.8%) in 6-year-old Korean children. Excess iodine was associated with a decrease in FT4 or T3 levels and an increase in TSH levels. The longitudinal effects of iodine excess on later thyroid function and health outcomes require further investigation.
Project description:The new steroidal 5,7-diene, 3beta-hydroxyandrosta-5,7-diene-17beta-carboxylic acid (17-COOH-7DA), was synthesized from 21-acetoxypregnenolone, with the oxidative cleavage of the side chain being dependent on the presence of oxygen. In human epidermal (HaCaT) keratinocytes, 17-COOH-7DA inhibited proliferation in a dose-dependent manner, starting at a dose as low as 10(-11) M. This inhibition was accompanied by decreased expression of epidermal growth factor receptor, bcl2 and cyclin E2 mRNAs and by increased expression of involucrin mRNA. Inhibition of proliferation was associated with slowing of the cell cycle in G1/G0 phases but not with cell death. 17-COOH-7DA was significantly more potent than pregnenolone, 17-COOH-pregnenolone, 17-COOCH(3)-7DA and calcitriol. 17-COOH-7DA also inhibited proliferation of normal human epidermal melanocytes and human and hamster melanoma lines, however, with lower potency than for keratinocytes. In normal human dermal fibroblasts 17-COOH-7DA stimulated proliferation in serum-free media but inhibited it in the presence of 5% serum. 17-COOH-7DA inhibited cell colony formation of human and hamster melanoma cells, and induced monocyte-like differentiation of human HL60 leukemia cells. Thus, the new steroidal 5,7-diene, 17-COOH-7DA, can serve as an inhibitor of proliferation of normal keratinocytes and normal and malignant melanocytes, as a condition-dependent regulator of fibroblast proliferation and a stimulator of leukemia cell differentiation.
Project description:Colorless transparent vulcanizates of silicone elastomers were prepared by mixing the components in a common solvent followed by solvent removal. We studied the correlation between the mechanical behavior of polydimethylsiloxane (PDMS)-rubber compositions prepared using MQ (mono-(M) and tetra-(Q) functional siloxane) copolymers with different ratios of M and Q parts as a molecular filler. The composition and molecular structure of the original rubber, MQ copolymers, and carboxyl-containing PDMS oligomers were also investigated. The simplicity of the preparation of the compositions, high strength and elongation at break, and their variability within a wide range allows us to consider silicone elastomers as a promising alternative to silicone materials prepared by traditional methods.
Project description:The shape of phylogenetic trees can be used to gain evolutionary insights. A tree's shape specifies the connectivity of a tree, while its branch lengths reflect either the time or genetic distance between branching events; well-known measures of tree shape include the Colless and Sackin imbalance, which describe the asymmetry of a tree. In other contexts, network science has become an important paradigm for describing structural features of networks and using them to understand complex systems, ranging from protein interactions to social systems. Network science is thus a potential source of many novel ways to characterize tree shape, as trees are also networks. Here, we tailor tools from network science, including diameter, average path length, and betweenness, closeness, and eigenvector centrality, to summarize phylogenetic tree shapes. We thereby propose tree shape summaries that are complementary to both asymmetry and the frequencies of small configurations. These new statistics can be computed in linear time and scale well to describe the shapes of large trees. We apply these statistics, alongside some conventional tree statistics, to phylogenetic trees from three very different viruses (HIV, dengue fever and measles), from the same virus in different epidemiological scenarios (influenza A and HIV) and from simulation models known to produce trees with different shapes. Using mutual information and supervised learning algorithms, we find that the statistics adapted from network science perform as well as or better than conventional statistics. We describe their distributions and prove some basic results about their extreme values in a tree. We conclude that network science-based tree shape summaries are a promising addition to the toolkit of tree shape features. All our shape summaries, as well as functions to select the most discriminating ones for two sets of trees, are freely available as an R package at http://github.com/Leonardini/treeCentrality.
Project description:Transition-metal-catalyzed diazo activation is a classical way to generate metal carbene, which are valuable intermediates in synthetic organic chemistry. An alternative iodine-catalyzed diazo activation is disclosed herein under either photo-initiated or thermal-initiated conditions, which represents an approach to enable carbene radical reactivity. This metal-free diazo activation strategy were successfully applied into olefin cyclopropanation and epoxidation, and applying this method to pyrrole synthesis under thermal-initiated conditions further demonstrates the unique reactivity using this method over typical metal-catalyzed conditions.
Project description:As the rubber industry seeks sustainable alternatives to mitigate its environmental impact, this study introduces a biobased approach using polyfarnesene rubber reinforced with plasma-modified cellulose nanocrystals (MCNC) and nanofibers (MCNF). The nanocellulose was modified by plasma-induced polymerization using trans-β-farnesene and was characterized by FTIR, XPS, XRD, TGA, and SEM to confirm the grafting of farnesene-derived polymer chains onto the cellulose surface, demonstrating the successful modification and integration of the nanoparticles. Polyfarnesene bio-based rubbers were synthesized through two different polymerization techniques: solution-based coordination polymerization (PFA1) and emulsion-based free radical polymerization (PFA2). The modified nanoparticles were incorporated into these rubber matrices at 2-12 wt% and vulcanized by incorporation of sulfur. The performance of bio-rubbers reinforced with cellulose nanoparticles was analyzed by tensile test and dynamic mechanical analysis (DMA). Mechanical tests focused on tensile strength, Young's modulus, and elongation at break showed that incorporation of 12 wt% modified MCNF into the PFA1 and PFA2 increased tensile strength by 56% and 22%, and Young's modulus by 27% and 58%, respectively (compared to the neat rubber matrix), while elongation at break decreased with increasing MCNF content. The addition of MCNC into PFA1 and PFA2 improved the deformation resistance values of 205% for PFA1-MCNC12% and 49% for PFA2-MCNC12%. Dynamic mechanical analysis showed an increase in storage modulus and a shift towards higher glass transition temperatures, indicating stronger filler-matrix interactions. The results demonstrate that plasma-modified cellulose nanoparticles effectively enhance the mechanical properties of polyfarnesene bio-rubbers, offering a sustainable alternative with performance competitive to synthetic rubbers.