Cyclophosphamide-Free Adjuvant Chemotherapy for the Potential Prevention of Premature Ovarian Insufficiency and Infertility in Young Women With Breast Cancer.
Cyclophosphamide-Free Adjuvant Chemotherapy for the Potential Prevention of Premature Ovarian Insufficiency and Infertility in Young Women With Breast Cancer.
Project description:BackgroundChemotherapy-induced premature menopause leads to some consequences, including infertility. We initiated this randomized phase III trial to determine whether a cyclophosphamide-free adjuvant chemotherapy regimen would increase the likelihood of menses resumption and improve survival outcomes.MethodsYoung women with operable estrogen receptor-positive HER2-negative breast cancer after definitive surgery were randomly assigned to receive adjuvant epirubicin and cyclophosphamidefollowed by weekly paclitaxel (EC-wP) or epirubicin and paclitaxel followed by weekly paclitaxel (EP-wP). All patients received at least 5-year adjuvant endocrine therapy after chemotherapy. Two coprimary endpoints were the rate of menstrual resumption at 12 months after chemotherapy and 5-year disease-free survival in the intention-to-treat population. This study is registered at ClinicalTrials.gov (NCT01026116). All statistical tests were 2-sided.ResultsBetween January 2011 and December 2016, 521 patients (median age = 34 years; interquartile range = 31-38 years) were enrolled, with 261 in the EC-wP group and 260 in the EP-wP group. The rate of menstrual resumption at 12 months after chemotherapy was 48.3% in EC-wP (95% confidence interval [CI] = 42.2% to 54.3%) and 63.1% in EP-wP (95% CI = 57.2% to 68.9%), with an absolute difference of 14.8% (95% CI = 6.37% to 23.2%, P < .001). The posthoc exploratory analysis by patient-reported outcome questionnaires indicated that pregnancy might occur in fewer women in the EC-wP group than in the EP-wP group. At a median follow-up of 62 months, the 5-year disease-free survival was 78.3% (95% CI = 72.2% to 83.3%) in EC-wP and 84.7% (95% CI = 79.3% to 88.8%) in EP-wP (stratified log-rank P = .07). The safety data were consistent with the known safety profiles of relevant drugs.ConclusionsThe cyclophosphamide-free chemotherapy regimen might be associated with a higher probability of menses resumption.
Project description:BackgroundPremature ovarian insufficiency (POI) patients present with a chronic inflammatory state. Cell-free mitochondria DNA (cf-mtDNA) has been explored as a reliable biomarker for estimating the inflammation-related disorders, however, the cf-mtDNA levels in POI patients have never been measured. Therefore, in the presenting study, we aimed to evaluate the levels of cf-mtDNA in plasma and follicular fluid (FF) of POI patients and to determine a potential role of cf-mtDNA in predicting the disease progress and pregnancy outcomes.MethodsWe collected plasma and FF samples from POI patients, biochemical POI (bPOI) patients and control women. Quantitative real-time PCR was used to measure the ratio of mitochondrial genome to nuclear genome of cf-DNAs extracted from the plasma and FF samples.ResultsThe plasma cf-mtDNA levels, including COX3, CYB, ND1 and mtDNA79, were significantly higher in overt POI patients than those in bPOI patients or control women. The plasma cf-mtDNA levels were weakly correlated with ovarian reserve, and could not be improved by regular hormone replacement therapy. The levels of cf-mtDNA in FF, rather than those in plasma, exhibited the potential to predict the pregnancy outcomes, although they were comparable among overt POI, bPOI and control groups.ConclusionsThe increased plasma cf-mtDNA levels in overt POI patients indicated its role in the progress of POI and the FF cf-mtDNA content may hold the value in predicting pregnancy outcomes of POI patients.
Project description:BackgroundPremature ovarian insufficiency (POI) is a refractory disease that seriously affects the reproductive health of women and is increasing in incidence and prevalence globally. There is enormous demand to improve fertility in women with POI, while there is still lack of effective therapeutic methods in clinic. Cell-free fat extract (CEFFE) has been reported to contain thousands of active proteins which possess the ability to promote tissue repair in other diseases. In our study, we aimed to observe the efficacy and biosecurity of CEFFE on the repair of ovarian function and fertility of mice with POI and further explore the underlying mechanism.MethodsIn vivo, POI mice model, established by cyclophosphamide (CTX, 120 mg/kg) and busulfan (BUS, 12 mg/kg), was treated with CEFFE via the tail vein every two days for 2 weeks. Then, the weight of ovaries, estrous cycle and follicle count by H&E staining were measured. The content of AMH, E2 and FSH in serum was measured by Enzyme-linked immunosorbent assay. Fertility was evaluated by the number of oocytes retrieved, the development of embryos in vitro and the litter size. Biosecurity of parent mice and their pups were examined by body mass and visceral index. The proliferation and apoptosis of cells in ovaries were examined by immunohistochemistry and transmission electron microscopy. Furthermore, the mRNA-Seq of mouse ovarian granulosa cells was performed to explore underlying mechanism of CEFFE. In vitro, KGN cell line and human primary ovarian granulosa cells (hGCs) were treated with 250 μM CTX for 48 h with/without CEFFE. The proliferative ability of cells was detected by cell counting kit-8 assay (CCK-8) and EDU test; the apoptosis of cells was detected by TUNEL and flow cytometry.ResultsCEFFE recovered the content of AMH, E2 and FSH in serum, increased the number of follicles and the retrieved oocytes of POI mice (P < 0.05). CEFFE contributed to the development of embryos and improved the litter size of POI mice (P < 0.05). There was no side effect of CEFFE on parent mice and their pups. CEFFE contributed to the proliferation and inhibited the apoptosis of mouse granulosa cells in ovary, as well as in human ovarian granulosa cells (including KGN cell line and hGCs) (P < 0.05).ConclusionsThe treatment of CEFFE inhibited the apoptosis of granulosa cells and contributed to the recovery of ovarian function, as well as the fertility of mice with POI.
Project description:BackgroundPremature ovarian insufficiency (POI) is one of the most serious side effects of chemotherapy in young cancer survivors. It may not only reduce fecundity but also affect lifelong health. There is no standard therapy for preserving ovarian health after chemotherapy. Recently, administration of embryonic stem cell-derived mesenchymal progenitor cells (ESC-MPCs) has been considered a new therapeutic option for preventing POI. However, the previous method of directly injecting cells into the veins of patients exhibits low efficacy and safety. This study aimed to develop safe and effective local delivery methods for the prevention of POI using two types of bioinspired scaffolds.MethodsFemale mice received intraperitoneal cisplatin for 10 days. On day 11, human ESC-MPCs were delivered through systemic administration using intravenous injection or local administration using intradermal injection and intradermal transplantation with a PLGA/MH sponge or hyaluronic acid (HA) gel (GEL) type of scaffold. PBS was injected intravenously as a negative control. Ovarian function and fertility were evaluated 4 weeks after transplantation. Follicle development was observed using hematoxylin and eosin staining. The plasma levels of sex hormones were measured using ELISA. Expression levels of anti-Müllerian hormone (AMH) and ki-67 were detected using immunostaining, and the quality of oocytes and embryos was evaluated after in vitro fertilization. The estrous cycles were observed at 2 months after transplantation.ResultsThe local administration of human ESC-MPCs using the bioinspired scaffold to the backs of mice effectively prolonged the cell survival rate in vivo. The HA GEL group exhibited the best recovered ovarian functions, including a significantly increased number of ovarian reserves, estrogen levels, and AMH levels and decreased apoptotic levels. Furthermore, the HA GEL group showed improved quality of oocytes and embryos and estrous cycle regularity.ConclusionsHA GEL scaffolds can be used as new delivery platforms for ESC-MPC therapy, and this method may provide a novel option for the clinical treatment of chemotherapy-induced POI.
Project description:BackgroundPremature ovarian insufficiency (POI) patients are predisposed to metabolic disturbances, including in lipid metabolism and glucose metabolism, and metabolic disorders appear to be a prerequisite of the typical long-term complications of POI, such as cardiovascular diseases or osteoporosis. However, the metabolic changes underlying the development of POI and its subsequent complications are incompletely understood, and there are few studies characterizing the disturbed metabolome in POI patients. The aim of this study was to characterize the plasma metabolome in POI by using ultrahigh-performance liquid chromatography-mass spectrometry (UHPLC-MS/MS) metabolomics and to evaluate whether these disturbances identified in the plasma metabolome relate to ovarian reserve and have diagnostic value in POI.MethodsThis observational study recruited 30 POI patients and 30 age- and body mass index (BMI)-matched controls in the Center for Reproductive Medicine, Department of Gynecology and Obstetrics, Nanfang Hospital, Southern Medical University, from January 2018 to October 2020. Fasting venous blood was collected at 9:00 am on days 2-4 of the menstrual cycle and centrifuged for analysis. An untargeted quantitative metabolomic analysis was performed using UHPLC-MS/MS.ResultsOur study identified 48 upregulated and 21 downregulated positive metabolites, and 13 upregulated and 48 downregulated negative metabolites in the plasma of POI patients. The differentially regulated metabolites were involved in pathways such as caffeine metabolism and ubiquinone and other terpenoid-quinone biosynthesis. Six metabolites with an AUC value > 0.8, including arachidonoyl amide, 3-hydroxy-3-methylbutanoic acid, dihexyl nonanedioate, 18-HETE, cystine, and PG (16:0/18:1), were correlated with ovarian reserve and thus have the potential to be diagnostic biomarkers of POI.ConclusionThis UHPLC-MS/MS untargeted metabolomics study revealed differentially expressed metabolites in the plasma of patients with POI. The differential metabolites may not only be involved in the aetiology of POI but also contribute to its major complications. These findings offer a panoramic view of the plasma metabolite changes caused by POI, which may provide useful diagnostic and therapeutic clues for POI disease.
Project description:Premature ovarian insufficiency (POI) is defined as a primary ovarian defect characterized by absent menarche (primary amenorrhea) or premature depletion of ovarian follicles before the age of 40 (secondary amenorrhea) with hypergonadotropism and hypoestrogenism. Premature ovarian insufficiency has few known genetic causes but in familial cases a genetic link is often suspected. A large consanguineous family with three female affected with POI was investigated. All samples including 3 affected and 5 unaffecd underwent whole genome SNP genotyping using Affymetric Axiom_GW_Hu_SNP array. Linkage analysis was carried out using HomozygosityMapper and Allegro softwares.Linkage analysis mapped the disease phenotype to long arm of chromosome 20. Sequence data analysis of potential candidate genes failed to detect any pathogenic variant. Affymetrix SNP arrays were performed according to the manufacturer's directions on DNA extracted from peripheral blood samples. DNA of eight individuals including three affected subjects was used for homozygosity mapping. Genotyping was performed using the Affymetrix Axiom_GW_Hu_SNP array. Briefly, 250 ng genomic DNA was digested with Digestion Master Mix containing 2 µl NE buffer 2 (10X), 0.5 µl BSA (100X; 10 mg/ml) and 1 µl Nsp1. Digested DNA sample was ligated to Nsp1 adaptor using T4 DNA ligase and amplified by 2 µl of TITANIUM Taq DNA polymerase (50X) and 100 µM PCR primer. PCR products were purified on a Clean-Up plate (Clontech Lab, Madison, USA) and eluted by RB buffer. Purified PCR products were fragmented using Fragmentation Reagent (0.05U/µl DNase 1) for 35 minutes at 37°C followed by labeling of fragmented samples with Labeling Master Mix (30 mM GeneChip DNA Labeling Reagent, 30 U/µl Terminal Deoxynucleotidyl Transferase) for 4 hours at 37°C. Labeled samples were hybridized to Axiom_GW_Hu_SNP array by mixing the sample with Hybridization Master Mix, denatured on thermoblock and loaded on to Array. Array was then placed in a hybridization oven (GeneChip Hybridization Oven 640, USA) for 16-18 hours. After hybridization, array was washed and stained on an automated Fluidic Station 450 followed by scanning on GeneChip Scanner 3000 7G using GeneChip Operating Software (GCOS).