Unknown

Dataset Information

0

Robust and Fast Lithium Storage Enabled by Polypyrrole-Coated Nitrogen and Phosphorus Co-Doped Hollow Carbon Nanospheres for Lithium-Ion Capacitors.


ABSTRACT: Lithium-ion capacitors (LICs) have been proposed as an emerging technological innovation that integrates the advantages of lithium-ion batteries and supercapacitors. However, the high-power output of LICs still suffers from intractable challenges due to the sluggish reaction kinetics of battery-type anodes. Herein, polypyrrole-coated nitrogen and phosphorus co-doped hollow carbon nanospheres (NPHCS@PPy) were synthesized by a facile method and employed as anode materials for LICs. The unique hybrid architecture composed of porous hollow carbon nanospheres and PPy coating layer can expedite the mass/charge transport and enhance the structural stability during repetitive lithiation/delithiation process. The N and P dual doping plays a significant role on expanding the carbon layer spacing, enhancing electrode wettability, and increasing active sites for pseudocapacitive reactions. Benefiting from these merits, the NPHCS@PPy composite exhibits excellent lithium-storage performances including high rate capability and good cycling stability. Furthermore, a novel LIC device based on the NPHCS@PPy anode and the nitrogen-doped porous carbon cathode delivers a high energy density of 149 Wh kg-1 and a high power density of 22,500 W kg-1 as well as decent cycling stability with a capacity retention rate of 92% after 7,500 cycles. This work offers an applicable and alternative way for the development of high-performance LICs.

SUBMITTER: Zhang M 

PROVIDER: S-EPMC8497749 | biostudies-literature | 2021

REPOSITORIES: biostudies-literature

altmetric image

Publications

Robust and Fast Lithium Storage Enabled by Polypyrrole-Coated Nitrogen and Phosphorus Co-Doped Hollow Carbon Nanospheres for Lithium-Ion Capacitors.

Zhang Mengdi M   Zheng Xuan X   Mu Jiawei J   Liu Pengfei P   Yuan Wenhan W   Li Shuli S   Wang Xiaobo X   Fang Haiqiu H   Liu Haiyan H   Xing Tao T   Hu Han H   Wu Mingbo M  

Frontiers in chemistry 20210924


Lithium-ion capacitors (LICs) have been proposed as an emerging technological innovation that integrates the advantages of lithium-ion batteries and supercapacitors. However, the high-power output of LICs still suffers from intractable challenges due to the sluggish reaction kinetics of battery-type anodes. Herein, polypyrrole-coated nitrogen and phosphorus co-doped hollow carbon nanospheres (NPHCS@PPy) were synthesized by a facile method and employed as anode materials for LICs. The unique hybr  ...[more]

Similar Datasets

| S-EPMC6325630 | biostudies-literature
| S-EPMC10976248 | biostudies-literature
| S-EPMC9065687 | biostudies-literature
| S-EPMC7770933 | biostudies-literature
| S-EPMC9091313 | biostudies-literature
| S-EPMC4082425 | biostudies-literature
| S-EPMC9080017 | biostudies-literature
| S-EPMC5456559 | biostudies-literature
| S-EPMC9782085 | biostudies-literature
| S-EPMC10381384 | biostudies-literature