Ontology highlight
ABSTRACT:
SUBMITTER: Bulloni M
PROVIDER: S-EPMC8508355 | biostudies-literature | 2021 Sep
REPOSITORIES: biostudies-literature
Bulloni Matteo M Sandrini Giada G Stacchiotti Irene I Barberis Massimo M Calabrese Fiorella F Carvalho Lina L Fontanini Gabriella G Alì Greta G Fortarezza Francesco F Hofman Paul P Hofman Veronique V Kern Izidor I Maiorano Eugenio E Maragliano Roberta R Marchiori Deborah D Metovic Jasna J Papotti Mauro M Pezzuto Federica F Pisa Eleonora E Remmelink Myriam M Serio Gabriella G Marzullo Andrea A Trabucco Senia Maria Rosaria SMR Pennella Antonio A De Palma Angela A Marulli Giuseppe G Fassina Ambrogio A Maffeis Valeria V Nesi Gabriella G Naheed Salma S Rea Federico F Ottensmeier Christian H CH Sessa Fausto F Uccella Silvia S Pelosi Giuseppe G Pattini Linda L
Cancers 20210929 19
Lung neuroendocrine neoplasms (lung NENs) are categorised by morphology, defining a classification sometimes unable to reflect ultimate clinical outcome. Subjectivity and poor reproducibility characterise diagnosis and prognosis assessment of all NENs. Here, we propose a machine learning framework for tumour prognosis assessment based on a quantitative, automated and repeatable evaluation of the spatial distribution of cells immunohistochemically positive for the proliferation marker Ki-67, perf ...[more]