Unknown

Dataset Information

0

Temperature profile characterization with fluorescence lifetime imaging microscopy in a thermophoretic chip.


ABSTRACT: This study introduces a thermophoretic lab-on-a-chip device to measure the Soret coefficient. We use resistive heating of a microwire on the chip to induce a temperature gradient, which is measured by fluorescence lifetime imaging microscopy (FLIM). To verify the functionality of the device, we used dyed polystyrene particles with a diameter of 25 nm. A confocal microscope is utilized to monitor the concentration profile of colloidal particles in the temperature field. Based on the measured temperature and concentration differences, we calculate the corresponding Soret coefficient. The same particles have been recently investigated with thermal diffusion forced Rayleigh scattering (TDFRS) and we find that the obtained Soret coefficients agree with literature results. This chip offers a simple way to study the thermophoretic behavior of biological systems in multicomponent buffer solutions quantitatively, which are difficult to study with optical methods solely relying on the refractive index contrast.

SUBMITTER: Lee N 

PROVIDER: S-EPMC8526468 | biostudies-literature | 2021 Oct

REPOSITORIES: biostudies-literature

altmetric image

Publications

Temperature profile characterization with fluorescence lifetime imaging microscopy in a thermophoretic chip.

Lee Namkyu N   Afanasenkau Dzmitry D   Rinklin Philipp P   Wolfrum Bernhard B   Wiegand Simone S  

The European physical journal. E, Soft matter 20211019 10


This study introduces a thermophoretic lab-on-a-chip device to measure the Soret coefficient. We use resistive heating of a microwire on the chip to induce a temperature gradient, which is measured by fluorescence lifetime imaging microscopy (FLIM). To verify the functionality of the device, we used dyed polystyrene particles with a diameter of 25 nm. A confocal microscope is utilized to monitor the concentration profile of colloidal particles in the temperature field. Based on the measured temp  ...[more]

Similar Datasets

| S-EPMC11399241 | biostudies-literature
| S-EPMC3293419 | biostudies-literature
| S-EPMC5473825 | biostudies-literature
| S-EPMC10887112 | biostudies-literature
| S-EPMC6783475 | biostudies-literature
| S-EPMC3734241 | biostudies-literature
| S-EPMC11888454 | biostudies-literature
| S-EPMC4585718 | biostudies-literature
| S-EPMC3628018 | biostudies-literature
| S-EPMC8668934 | biostudies-literature