Unknown

Dataset Information

0

Robust skyrmion mediated reversal of ferromagnetic nanodots of 20 nm lateral dimension with high Ms and observable DMI.


ABSTRACT: Implementation of skyrmion based energy efficient and high-density data storage devices requires aggressive scaling of skyrmion size. Ferrimagnetic materials are considered to be a suitable platform for this purpose due to their low saturation magnetization (i.e. smaller stray field). However, this method of lowering the saturation magnetization and scaling the lateral size of skyrmions is only applicable where the skyrmions have a smaller lateral dimension compared to the hosting film. Here, we show by performing rigorous micromagnetic simulation that the size of skyrmions, which have lateral dimension comparable to their hosting nanodot can be scaled by increasing saturation magnetization. Also, when the lateral dimension of nanodot is reduced and thereby the skyrmion confined in it is downscaled, there remains a challenge in forming a stable skyrmion with experimentally observed Dzyaloshinskii-Moriya interaction (DMI) values since this interaction has to facilitate higher canting  per spin to complete a 360° rotation along the diameter. In our study, we found that skyrmions can be formed in 20 nm lateral dimension nanodots with high saturation magnetization (1.30-1.70 MA/m) and DMI values (~ 3 mJ/m2) that have been reported to date. This result could stimulate experiments on implementation of highly dense skyrmion devices. Additionally, using this, we show that voltage controlled magnetic anisotropy based switching mediated by an intermediate skyrmion state can be achieved in the soft layer of a ferromagnetic p-MTJ of lateral dimensions 20 nm with sub 1 fJ/bit energy in the presence of room temperature thermal noise with reasonable DMI ~ 3 mJ/m2.

SUBMITTER: Rajib MM 

PROVIDER: S-EPMC8536757 | biostudies-literature | 2021 Oct

REPOSITORIES: biostudies-literature

altmetric image

Publications

Robust skyrmion mediated reversal of ferromagnetic nanodots of 20 nm lateral dimension with high M<sub>s</sub> and observable DMI.

Rajib Md Mahadi MM   Misba Walid Al WA   Bhattacharya Dhritiman D   Atulasimha Jayasimha J  

Scientific reports 20211022 1


Implementation of skyrmion based energy efficient and high-density data storage devices requires aggressive scaling of skyrmion size. Ferrimagnetic materials are considered to be a suitable platform for this purpose due to their low saturation magnetization (i.e. smaller stray field). However, this method of lowering the saturation magnetization and scaling the lateral size of skyrmions is only applicable where the skyrmions have a smaller lateral dimension compared to the hosting film. Here, we  ...[more]

Similar Datasets

| S-EPMC7536206 | biostudies-literature
| S-EPMC6786485 | biostudies-literature
| S-EPMC7887229 | biostudies-literature
| S-EPMC5526107 | biostudies-literature
| S-EPMC9304029 | biostudies-literature
| S-EPMC7733481 | biostudies-literature
| S-EPMC3999443 | biostudies-other
| S-EPMC5711886 | biostudies-literature
| S-EPMC8460664 | biostudies-literature
| S-EPMC7519674 | biostudies-literature