Project description:Although two-dose mRNA vaccination provides excellent protection against SARS-CoV-2, there is little information about vaccine efficacy against variants of concern (VOC) in individuals above eighty years of age1. Here we analysed immune responses following vaccination with the BNT162b2 mRNA vaccine2 in elderly participants and younger healthcare workers. Serum neutralization and levels of binding IgG or IgA after the first vaccine dose were lower in older individuals, with a marked drop in participants over eighty years old. Sera from participants above eighty showed lower neutralization potency against the B.1.1.7 (Alpha), B.1.351 (Beta) and P.1. (Gamma) VOC than against the wild-type virus and were more likely to lack any neutralization against VOC following the first dose. However, following the second dose, neutralization against VOC was detectable regardless of age. The frequency of SARS-CoV-2 spike-specific memory B cells was higher in elderly responders (whose serum showed neutralization activity) than in non-responders after the first dose. Elderly participants showed a clear reduction in somatic hypermutation of class-switched cells. The production of interferon-γ and interleukin-2 by SARS-CoV-2 spike-specific T cells was lower in older participants, and both cytokines were secreted primarily by CD4 T cells. We conclude that the elderly are a high-risk population and that specific measures to boost vaccine responses in this population are warranted, particularly where variants of concern are circulating.
Project description:Knowledge of the factors affecting the difference in kinetics and longevity of the neutralizing antibody (nAb) response to SARS-CoV-2 is necessary to properly prioritize vaccination. In the present study, from March to December 2020, of the 143 patients who recovered from COVID-19, 87 underwent study visits scheduled every 3 months. Patient demographics and blood samples were collected followed by a plaque reduction neutralization test to analyze nAb titers. A linear mixed model was used to compare the effects of sex, age, and disease severity over time. Results demonstrated a gradual reduction in nAb titers over time with a significant decrease from 6 to 9 months post-COVID-19 infection (p < 0.001). In time-to-sex, age, and disease severity comparisons, reduction in nAb titers over time was unaffected by sex (p = 0.167), age (p = 0.188), or disease severity (p = 0.081). Additionally, the nAb titer was 1.46 times significantly higher in those aged ≥ 50 years than in those aged < 50 years (p = 0.036) irrespective of time Moreover, the nAb titer was 2.41 times higher in the moderate or above than that in the below moderate disease severity group (p < 0.001). However, no significant differences were observed in terms of sex (p = 0.300). Given the reduction in nAbs over time, maintaining protective neutralizing antibodies regardless of sex, age, or disease severity is needed.
Project description:The BNT162b2 mRNA COVID-19 vaccine (Pfizer-BioNTech) is being utilised internationally for mass COVID-19 vaccination. Evidence of single-dose protection against symptomatic disease has encouraged some countries to opt for delayed booster doses of BNT162b2, but the effect of this strategy on rates of asymptomatic SARS-CoV-2 infection remains unknown. We previously demonstrated frequent pauci- and asymptomatic SARS-CoV-2 infection amongst healthcare workers (HCWs) during the UK's first wave of the COVID-19 pandemic, using a comprehensive PCR-based HCW screening programme (Rivett et al., 2020; Jones et al., 2020). Here, we evaluate the effect of first-dose BNT162b2 vaccination on test positivity rates and find a fourfold reduction in asymptomatic infection amongst HCWs ≥12 days post-vaccination. These data provide real-world evidence of short-term protection against asymptomatic SARS-CoV-2 infection following a single dose of BNT162b2 vaccine, suggesting that mass first-dose vaccination will reduce SARS-CoV-2 transmission, as well as the burden of COVID-19 disease.
Project description:BackgroundWaning of vaccine protection against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection or coronavirus disease 2019 (Covid-19) is a concern. The persistence of BNT162b2 (Pfizer-BioNTech) vaccine effectiveness against infection and disease in Qatar, where the B.1.351 (or beta) and B.1.617.2 (or delta) variants have dominated incidence and polymerase-chain-reaction testing is done on a mass scale, is unclear.MethodsWe used a matched test-negative, case-control study design to estimate vaccine effectiveness against any SARS-CoV-2 infection and against any severe, critical, or fatal case of Covid-19, from January 1 to September 5, 2021.ResultsEstimated BNT162b2 effectiveness against any SARS-CoV-2 infection was negligible in the first 2 weeks after the first dose. It increased to 36.8% (95% confidence interval [CI], 33.2 to 40.2) in the third week after the first dose and reached its peak at 77.5% (95% CI, 76.4 to 78.6) in the first month after the second dose. Effectiveness declined gradually thereafter, with the decline accelerating after the fourth month to reach approximately 20% in months 5 through 7 after the second dose. Effectiveness against symptomatic infection was higher than effectiveness against asymptomatic infection but waned similarly. Variant-specific effectiveness waned in the same pattern. Effectiveness against any severe, critical, or fatal case of Covid-19 increased rapidly to 66.1% (95% CI, 56.8 to 73.5) by the third week after the first dose and reached 96% or higher in the first 2 months after the second dose; effectiveness persisted at approximately this level for 6 months.ConclusionsBNT162b2-induced protection against SARS-CoV-2 infection appeared to wane rapidly following its peak after the second dose, but protection against hospitalization and death persisted at a robust level for 6 months after the second dose. (Funded by Weill Cornell Medicine-Qatar and others.).
Project description:BNT162b2 has proven to be highly effective, but there is a paucity of data regarding immunogenicity factors and comparison between response to vaccination and natural infection. This study included 871 vaccinated healthcare workers (HCW) and 181 patients with natural infection. Immunogenicity was assessed by measuring anti-SARS-CoV-2 against the RBD domain of the spike protein (anti-RBD). Samples were collected 1-2 weeks after vaccination or 15-59 days post-onset of symptoms. Post-vaccine anti-RBD concentrations were associated with age, gender, vaccination side-effects (VSE) and prior infection (Pr-CoV). Anti-RBD median levels (95%CI) were lower by 2466 (651-5583), 6228 (3254-9203) and 7651 (4479-10,823) AU/mL in 35-44, 45-54, 55-70 yrs, respectively, compared with the 18-34 yrs group. In females, the median levels were higher by 2823 (859-4787), 5024 (3122-6926) in individuals with VSE, and 9971 (5158-14,783) AU/mL in HCWs with Pr-CoV. The ratio of anti-RBD in vaccinated individuals versus those with natural infection varied from 1.0 to 19.4. The high immunogenicity of BNT162b2 is verified, although its sustainability has yet to be elucidated. The use of comparative data from natural infection serological panels, expressing the clinical heterogeneity of natural infection, may facilitate early decisions for candidate vaccines to be evaluated in clinical trials.
Project description:Evaluating the effect of SARS-CoV-2 on the transcriptional landscape in lung tissues, assess differences relative to sex and to candidate treatment.
Project description:ObjectiveThis study investigated the sex-associated difference in the impact of obesity on antibody response to a COVID-19 vaccine.MethodsThis study included 2,435 health care workers who received two doses of the BioNTech, Pfizer (BNT162b2) vaccine and participated in a serological survey, during which they were tested for anti-SARS-CoV-2 spike immunoglobin G (IgG) antibodies and asked for information on height, weight, and vaccination history via a questionnaire. Multivariable linear regression analysis was used to estimate the geometric mean titers (GMT) of antibodies for each sex and BMI category.ResultsThe relationship between BMI and anti-SARS-CoV-2 spike IgG titers markedly differed by sex (p value for interaction = 0.04). Spike IgG antibody titers tended to decrease with increasing BMI in men (p value for trend = 0.03); GMT (95% CI) were 6,093 (4,874-7,618) and 4,655 (3,795-5,708) for BMI < 18.5 and ≥30 kg/m2 , respectively. In contrast, spike IgG antibody titers did not significantly differ across BMI categories in women (p value for for trend = 0.62); GMT (95% CI) were 6,171 (5,714-6,665) and 5,506 (4,404-6,883) for BMI <18.5 and ≥30, respectively.ConclusionsHigher BMI was associated with lower titers of SARS-CoV-2 spike antibodies in men, but not in women, suggesting the need for careful monitoring of vaccine efficacy in men with obesity, who are at high risk of severe COVID-19 outcomes.
Project description:We estimated vaccine effectiveness (VE) of the BNT162b2 (Pfizer-BioNTech, https://www.pfizer.com) booster dose against SARS-CoV-2 infection and reduction of complications (hospitalization, severe disease, and death) among breakthrough cases in persons in Israel >16 years of age for <20 weeks. VE estimates reached 96.8% (95% CI 96.0%-97.5%) for persons 16-59 years of age and 93.1% (95% CI 91.8%-94.2%) for persons >60 years of age on week 3. VE estimates remained at these levels for 8 weeks in the 16-59 age group and 11 weeks in those >60. A slow decline followed, becoming more pronounced in the last 2-3 weeks of evaluation. Estimates in the last week of evaluation were 77.6% (95% CI 68.4%-84.2%) and 61.3% (52.5%-68.4%) for persons 16-59 years and >60 years, respectively. The more pronounced VE decline coincided with rapid increase in Omicron variant activity. Rate reduction of breakthrough complications remained moderate to high throughout the evaluation.