Unknown

Dataset Information

0

Room-temperature multiple ligands-tailored SnO2 quantum dots endow in situ dual-interface binding for upscaling efficient perovskite photovoltaics with high VOC.


ABSTRACT: The benchmark tin oxide (SnO2) electron transporting layers (ETLs) have enabled remarkable progress in planar perovskite solar cell (PSCs). However, the energy loss is still a challenge due to the lack of "hidden interface" control. We report a novel ligand-tailored ultrafine SnO2 quantum dots (QDs) via a facile rapid room temperature synthesis. Importantly, the ligand-tailored SnO2 QDs ETL with multi-functional terminal groups in situ refines the buried interfaces with both the perovskite and transparent electrode via enhanced interface binding and perovskite passivation. These novel ETLs induce synergistic effects of physical and chemical interfacial modulation and preferred perovskite crystallization-directing, delivering reduced interface defects, suppressed non-radiative recombination and elongated charge carrier lifetime. Power conversion efficiency (PCE) of 23.02% (0.04 cm2) and 21.6% (0.98 cm2, VOC loss: 0.336 V) have been achieved for the blade-coated PSCs (1.54 eV Eg) with our new ETLs, representing a record for SnO2 based blade-coated PSCs. Moreover, a substantially enhanced PCE (VOC) from 20.4% (1.15 V) to 22.8% (1.24 V, 90 mV higher VOC, 0.04 cm2 device) in the blade-coated 1.61 eV PSCs system, via replacing the benchmark commercial colloidal SnO2 with our new ETLs.

SUBMITTER: Ren Z 

PROVIDER: S-EPMC8639768 | biostudies-literature | 2021 Dec

REPOSITORIES: biostudies-literature

altmetric image

Publications

Room-temperature multiple ligands-tailored SnO<sub>2</sub> quantum dots endow in situ dual-interface binding for upscaling efficient perovskite photovoltaics with high V<sub>OC</sub>.

Ren Zhiwei Z   Liu Kuan K   Hu Hanlin H   Guo Xuyun X   Gao Yajun Y   Fong Patrick W K PWK   Liang Qiong Q   Tang Hua H   Huang Jiaming J   Zhang Hengkai H   Qin Minchao M   Cui Li L   Chandran Hrisheekesh Thachoth HT   Shen Dong D   Lo Ming-Fai MF   Ng Annie A   Surya Charles C   Shao Minhua M   Lee Chun-Sing CS   Lu Xinhui X   Laquai Frédéric F   Zhu Ye Y   Li Gang G  

Light, science & applications 20211202 1


The benchmark tin oxide (SnO<sub>2</sub>) electron transporting layers (ETLs) have enabled remarkable progress in planar perovskite solar cell (PSCs). However, the energy loss is still a challenge due to the lack of "hidden interface" control. We report a novel ligand-tailored ultrafine SnO<sub>2</sub> quantum dots (QDs) via a facile rapid room temperature synthesis. Importantly, the ligand-tailored SnO<sub>2</sub> QDs ETL with multi-functional terminal groups in situ refines the buried interfac  ...[more]

Similar Datasets

| S-EPMC11405757 | biostudies-literature
| S-EPMC9062405 | biostudies-literature
| S-EPMC9095639 | biostudies-literature
| S-EPMC9475515 | biostudies-literature
| S-EPMC11533177 | biostudies-literature
| S-EPMC9370154 | biostudies-literature
| S-EPMC9799018 | biostudies-literature
| S-EPMC8227939 | biostudies-literature
| S-EPMC7927604 | biostudies-literature
| S-EPMC11464595 | biostudies-literature