Project description:BackgroundEndpoint choice for randomized controlled trials of treatments for novel coronavirus-induced disease (COVID-19) is complex. Trials must start rapidly to identify treatments that can be used as part of the outbreak response, in the midst of considerable uncertainty and limited information. COVID-19 presentation is heterogeneous, ranging from mild disease that improves within days to critical disease that can last weeks to over a month and can end in death. While improvement in mortality would provide unquestionable evidence about the clinical significance of a treatment, sample sizes for a study evaluating mortality are large and may be impractical, particularly given a multitude of putative therapies to evaluate. Furthermore, patient states in between "cure" and "death" represent meaningful distinctions. Clinical severity scores have been proposed as an alternative. However, the appropriate summary measure for severity scores has been the subject of debate, particularly given the variable time course of COVID-19. Outcomes measured at fixed time points, such as a comparison of severity scores between treatment and control at day 14, may risk missing the time of clinical benefit. An endpoint such as time to improvement (or recovery) avoids the timing problem. However, some have argued that power losses will result from reducing the ordinal scale to a binary state of "recovered" versus "not recovered."MethodsWe evaluate statistical power for possible trial endpoints for COVID-19 treatment trials using simulation models and data from two recent COVID-19 treatment trials.ResultsPower for fixed time-point methods depends heavily on the time selected for evaluation. Time-to-event approaches have reasonable statistical power, even when compared with a fixed time-point method evaluated at the optimal time.DiscussionTime-to-event analysis methods have advantages in the COVID-19 setting, unless the optimal time for evaluating treatment effect is known in advance. Even when the optimal time is known, a time-to-event approach may increase power for interim analyses.
Project description:BackgroundIn the context of the COVID-19 pandemic, randomized controlled trials (RCTs) are essential to support clinical decision-making. We aimed (1) to assess and compare the reporting characteristics of RCTs between preprints and peer-reviewed publications and (2) to assess whether reporting improves after the peer review process for all preprints subsequently published in peer-reviewed journals.MethodsWe searched the Cochrane COVID-19 Study Register and L·OVE COVID-19 platform to identify all reports of RCTs assessing pharmacological treatments of COVID-19, up to May 2021. We extracted indicators of transparency (e.g., trial registration, data sharing intentions) and assessed the completeness of reporting (i.e., some important CONSORT items, conflict of interest, ethical approval) using a standardized data extraction form. We also identified paired reports published in preprint and peer-reviewed publications.ResultsWe identified 251 trial reports: 121 (48%) were first published in peer-reviewed journals, and 130 (52%) were first published as preprints. Transparency was poor. About half of trials were prospectively registered (n = 140, 56%); 38% (n = 95) made their full protocols available, and 29% (n = 72) provided access to their statistical analysis plan report. A data sharing statement was reported in 68% (n = 170) of the reports of which 91% stated their willingness to share. Completeness of reporting was low: only 32% (n = 81) of trials completely defined the pre-specified primary outcome measures; 57% (n = 143) reported the process of allocation concealment. Overall, 51% (n = 127) adequately reported the results for the primary outcomes while only 14% (n = 36) of trials adequately described harms. Primary outcome(s) reported in trial registries and published reports were inconsistent in 49% (n = 104) of trials; of them, only 15% (n = 16) disclosed outcome switching in the report. There were no major differences between preprints and peer-reviewed publications. Of the 130 RCTs published as preprints, 78 were subsequently published in a peer-reviewed journal. There was no major improvement after the journal peer review process for most items.ConclusionsTransparency, completeness, and consistency of reporting of COVID-19 clinical trials were insufficient both in preprints and peer-reviewed publications. A comparison of paired reports published in preprint and peer-reviewed publication did not indicate major improvement.
Project description:The novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) altered the logistics of ongoing randomized controlled trials (RCTs). The need to reduce in-person research and clinical activities, however, presented an additional level of complexity in order to continue conducting RCTs that focused on the development of medications for Alcohol Use Disorder (AUD). The visits required a systematic objective evaluation from the physician and mental health professional and clinical staff, as many of the safety and efficacy assessments are self-reported. The following commentary addresses the successes and limitations our RCTs encountered during the coronavirus (COVID-19) pandemic.
Project description:BackgroundThe novel coronavirus 2019 (COVID-19) pandemic has mobilized global research at an unprecedented scale. While challenges associated with the COVID-19 trial landscape have been discussed previously, no comprehensive reviews have been conducted to assess the reporting, design, and data sharing practices of randomized controlled trials (RCTs).PurposeThe purpose of this review was to gain insight into the current landscape of reporting, methodological design, and data sharing practices for COVID-19 RCTs.Data sourcesWe conducted three searches to identify registered clinical trials, peer-reviewed publications, and pre-print publications.Study selectionAfter screening eight major trial registries and 7844 records, we identified 178 registered trials and 38 publications describing 35 trials, including 25 peer-reviewed publications and 13 pre-prints.Data extractionTrial ID, registry, location, population, intervention, control, study design, recruitment target, actual recruitment, outcomes, data sharing statement, and time of data sharing were extracted.Data synthesisOf 178 registered trials, 112 (62.92%) were in hospital settings, median planned recruitment was 100 participants (IQR: 60, 168), and the majority (n = 166, 93.26%) did not report results in their respective registries. Of 35 published trials, 31 (88.57%) were in hospital settings, median actual recruitment was 86 participants (IQR: 55.5, 218), 10 (28.57%) did not reach recruitment targets, and 27 trials (77.14%) reported plans to share data.ConclusionsThe findings of our study highlight limitations in the design and reporting practices of COVID-19 RCTs and provide guidance towards more efficient reporting of trial results, greater diversity in patient settings, and more robust data sharing.
Project description:ObjectivesThis study aimed to describe the prevalence of risks of bias in randomized trials of therapeutic interventions for COVID-19.MethodsSystematic review and risk of bias assessment performed by two independent reviewers of a random sample of 40 randomized trials of therapeutic interventions for moderate-severe COVID-19. We used the RoB 2.0 tool to assess the risk of bias, which evaluates bias under five domains as well as an overall assessment of each trial as high or low risk of bias.ResultsOf the 40 included trials, 19 (47%) were at high risk of bias, and this was particularly frequent in trials from low-middle income countries (11/14, 79%). Potential deviations to intended interventions (i.e., control participants accessing experimental treatments) were considered a potential source of bias in some studies (14, 35%), as was the risk due to selective reporting of results (6, 15%). The randomization process was considered at low risk of bias in most studies (34, 95%), as were missing data (36, 90%) and measurement of the outcome (35, 87%).ConclusionMany randomized trials evaluating COVID-19 interventions are at risk of bias, particularly those conducted in low-middle income countries. Biases are mostly due to deviations from intended interventions and partly due to the selection of reported results. The use of placebo control and publicly available protocol can mitigate many of these risks.
Project description:BackgroundNVX-CoV2373 (Nuvaxovid™ or the Novavax COVID-19 Vaccine, Adjuvanted), the first protein-based COVID-19 vaccine, received emergency use authorization (EUA) as a primary series/booster and is available globally. NVX-CoV2373 primary series demonstrated efficacy rates of 89.7-90.4 % and an acceptable safety profile. This article summarizes safety in adult recipients (aged ≥ 18 years) of primary series NVX-CoV2373 in four randomized placebo-controlled trials.MethodsAll participants who received NVX-CoV2373 primary series or placebo (pre-crossover) were included according to actual received treatment. The safety period was from Day 0 (first vaccination) to unblinding/receipt of EUA-approved/crossover vaccine, end of each study (EOS), or last visit date/cutoff date minus 14 days. The analysis reviewed local and systemic solicited adverse events (AEs) within 7 days after NVX-CoV2373 or placebo; unsolicited AEs from after Dose 1 to 28 days after Dose 2; serious AEs (SAEs), deaths, AEs of special interest, and vaccine-related medically attended AEs from Day 0 through end of follow-up (incidence rate per 100 person-years).FindingsPooled data from 49,950 participants (NVX-CoV2373, n = 30,058; placebo, n = 19,892) were included. Solicited reactions after any dose were more frequent in NVX-CoV2373 recipients (local, 76 %/systemic, 70 %) than placebo recipients (local, 29 %/systemic, 47 %), and were mostly of mild-to-moderate severity. Grade 3+ reactions were infrequent, with greater frequency in NVX-CoV2373 recipients (local, 6.28 %/systemic, 11.36 %) than placebo recipients (local, 0.48 %/systemic, 3.58 %). SAEs and deaths occurred with similarly low frequency in NVX-CoV2373 (SAEs: 0.91 %, deaths: 0.07 %) and placebo recipients (SAEs: 1.0 %, deaths: 0.06 %).InterpretationTo date, NVX-CoV2373 has displayed an acceptable safety profile in healthy adults.FundingSupported by Novavax, Inc.
Project description:BackgroundTo date, only dexamethasone has been shown to reduce mortality in coronavirus disease-19 (COVID-19) patients. Tocilizumab has been recently added to the treatment guidelines for hospitalized COVID-19 patients, but data remain conflicting.Study design and methodsElectronic databases such as MEDLINE, EMBASE, and Cochrane central were searched from March 1, 2020, until March 10, 2021, for randomized controlled trials evaluating the efficacy of tocilizumab in hospitalized COVID-19 patients. The outcomes assessed were all-cause mortality, mechanical ventilation, and time to discharge.ResultsNine studies (with 6490 patients) were included in the analysis. In total, 3358 patients received tocilizumab, and 3132 received standard care/placebo. Pooled analysis showed a significantly decreased risk of all-cause mortality (RR 0.89, 95% CI 0.80-0.98, p = 0.02) and progression to mechanical ventilation (RR 0.80, 95% CI 0.71-0.89, p < 0.0001) in the tocilizumab arm compared to standard therapy or placebo. In addition, there was a trend towards improved median time to hospital discharge (RR 1.28, 95% CI 1.12-1.45, p = 0.0002).ConclusionsTocilizumab therapy improves outcomes of mortality and need for mechanical ventilation, in hospitalized patients with COVID-19 infection compared with standard therapy or placebo. Our findings suggest the efficacy of tocilizumab therapy in hospitalized COVID-19 patients and strengthen the concept that tocilizumab is a promising therapeutic intervention to improve mortality and morbidity in COVID-19 patients.
Project description:BackgroundCoronavirus disease 2019 (COVID-19) continues to pose a significant threat to public health worldwide. The purpose of this study was to review current evidence obtained from randomized clinical trials on the efficacy of antivirals for COVID-19 treatment.MethodsA systematic literature search was performed using PubMed to identify randomized controlled trials published up to September 4, 2021 that examined the efficacy of antivirals for COVID-19 treatment. Studies that were not randomized controlled trials or that did not include treatment of COVID-19 with approved antivirals were excluded. Risk of bias was assessed using the Scottish Intercollegiate Guidelines Network (SIGN) method. Due to study heterogeneity, inferential statistics were not performed and data were expressed as descriptive statistics.ResultsOf the 2,284 articles retrieved, 31 (12,440 patients) articles were included. Overall, antivirals were more effective when administered early in the disease course. No antiviral treatment demonstrated efficacy at reducing COVID-19 mortality. Sofosbuvir/daclatasvir results suggested clinical improvement, although statistical power was low. Remdesivir exhibited efficacy in reducing time to recovery, but results were inconsistent across trials.ConclusionsAlthough select antivirals have exhibited efficacy to improve clinical outcomes in COVID-19 patients, none demonstrated efficacy in reducing mortality. Larger RCTs are needed to conclusively establish efficacy.