Unknown

Dataset Information

0

Domain Wall Dynamics in a Ferroelastic Spin Crossover Complex with Giant Magnetoelectric Coupling.


ABSTRACT: Pinned and mobile ferroelastic domain walls are detected in response to mechanical stress in a Mn3+ complex with two-step thermal switching between the spin triplet and spin quintet forms. Single-crystal X-ray diffraction and resonant ultrasound spectroscopy on [MnIII(3,5-diCl-sal2(323))]BPh4 reveal three distinct symmetry-breaking phase transitions in the polar space group series CcPcP1 → P1(1/2). The transition mechanisms involve coupling between structural and spin state order parameters, and the three transitions are Landau tricritical, first order, and first order, respectively. The two first-order phase transitions also show changes in magnetic properties and spin state ordering in the Jahn-Teller-active Mn3+ complex. On the basis of the change in symmetry from that of the parent structure, Cc, the triclinic phases are also ferroelastic, which has been confirmed by resonant ultrasound spectroscopy. Measurements of magnetoelectric coupling revealed significant changes in electric polarization at both the PcP1 and P1 → P1(1/2) transitions, with opposite signs. All these phases are polar, while P1 is also chiral. Remanent electric polarization was detected when applying a pulsed magnetic field of 60 T in the P1→ P1(1/2) region of bistability at 90 K. Thus, we showcase here a rare example of multifunctionality in a spin crossover material where the strain and polarization tensors and structural and spin state order parameters are strongly coupled.

SUBMITTER: Jakobsen VB 

PROVIDER: S-EPMC8759087 | biostudies-literature | 2022 Jan

REPOSITORIES: biostudies-literature

altmetric image

Publications

Domain Wall Dynamics in a Ferroelastic Spin Crossover Complex with Giant Magnetoelectric Coupling.

Jakobsen Vibe Boel VB   Trzop Elzbieta E   Dobbelaar Emiel E   Gavin Laurence C LC   Chikara Shalinee S   Ding Xiaxin X   Lee Minseong M   Esien Kane K   Müller-Bunz Helge H   Felton Solveig S   Collet Eric E   Carpenter Michael A MA   Zapf Vivien S VS   Morgan Grace G GG  

Journal of the American Chemical Society 20211223 1


Pinned and mobile ferroelastic domain walls are detected in response to mechanical stress in a Mn<sup>3+</sup> complex with two-step thermal switching between the spin triplet and spin quintet forms. Single-crystal X-ray diffraction and resonant ultrasound spectroscopy on [Mn<sup>III</sup>(3,5-diCl-sal<sub>2</sub>(323))]BPh<sub>4</sub> reveal three distinct symmetry-breaking phase transitions in the polar space group series <i>Cc</i> → <i>Pc</i> → <i>P</i>1 → <i>P</i>1<sub>(1/2)</sub><i>.</i> Th  ...[more]

Similar Datasets

| S-EPMC7496919 | biostudies-literature
| S-EPMC10099592 | biostudies-literature
| S-EPMC9889801 | biostudies-literature
| S-EPMC4585675 | biostudies-literature
| S-EPMC8483440 | biostudies-literature
| S-EPMC9659027 | biostudies-literature
| S-EPMC5595903 | biostudies-literature
| S-EPMC10837372 | biostudies-literature
| S-EPMC8556288 | biostudies-literature
| S-EPMC7728769 | biostudies-literature