Unknown

Dataset Information

0

Mild respiratory SARS-CoV-2 infection can cause multi-lineage cellular dysregulation and myelin loss in the brain.


ABSTRACT: Survivors of Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) infection frequently experience lingering neurological symptoms, including impairment in attention, concentration, speed of information processing and memory. This long-COVID cognitive syndrome shares many features with the syndrome of cancer therapy-related cognitive impairment (CRCI). Neuroinflammation, particularly microglial reactivity and consequent dysregulation of hippocampal neurogenesis and oligodendrocyte lineage cells, is central to CRCI. We hypothesized that similar cellular mechanisms may contribute to the persistent neurological symptoms associated with even mild SARS-CoV-2 respiratory infection. Here, we explored neuroinflammation caused by mild respiratory SARS-CoV-2 infection - without neuroinvasion - and effects on hippocampal neurogenesis and the oligodendroglial lineage. Using a mouse model of mild respiratory SARS-CoV-2 infection induced by intranasal SARS-CoV-2 delivery, we found white matter-selective microglial reactivity, a pattern observed in CRCI. Human brain tissue from 9 individuals with COVID-19 or SARS-CoV-2 infection exhibits the same pattern of prominent white matter-selective microglial reactivity. In mice, pro-inflammatory CSF cytokines/chemokines were elevated for at least 7-weeks post-infection; among the chemokines demonstrating persistent elevation is CCL11, which is associated with impairments in neurogenesis and cognitive function. Humans experiencing long-COVID with cognitive symptoms (48 subjects) similarly demonstrate elevated CCL11 levels compared to those with long-COVID who lack cognitive symptoms (15 subjects). Impaired hippocampal neurogenesis, decreased oligodendrocytes and myelin loss in subcortical white matter were evident at 1 week, and persisted until at least 7 weeks, following mild respiratory SARS-CoV-2 infection in mice. Taken together, the findings presented here illustrate striking similarities between neuropathophysiology after cancer therapy and after SARS-CoV-2 infection, and elucidate cellular deficits that may contribute to lasting neurological symptoms following even mild SARS-CoV-2 infection.

SUBMITTER: Fernandez-Castaneda A 

PROVIDER: S-EPMC8764721 | biostudies-literature | 2022 Jan

REPOSITORIES: biostudies-literature

altmetric image

Publications

Mild respiratory SARS-CoV-2 infection can cause multi-lineage cellular dysregulation and myelin loss in the brain.

Fernández-Castañeda Anthony A   Lu Peiwen P   Geraghty Anna C AC   Song Eric E   Lee Myoung-Hwa MH   Wood Jamie J   Yalçın Belgin B   Taylor Kathryn R KR   Dutton Selena S   Acosta-Alvarez Lehi L   Ni Lijun L   Contreras-Esquivel Daniel D   Gehlhausen Jeff R JR   Klein Jon J   Lucas Carolina C   Mao Tianyang T   Silva Julio J   Peña-Hernández Mario A MA   Tabachnikova Alexandra A   Takahashi Takehiro T   Tabacof Laura L   Tosto-Mancuso Jenna J   Breyman Erica E   Kontorovich Amy A   McCarthy Dayna D   Quezado Martha M   Hefti Marco M   Perl Daniel D   Folkerth Rebecca R   Putrino David D   Nath Avi A   Iwasaki Akiko A   Monje Michelle M  

bioRxiv : the preprint server for biology 20220110


Survivors of Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) infection frequently experience lingering neurological symptoms, including impairment in attention, concentration, speed of information processing and memory. This long-COVID cognitive syndrome shares many features with the syndrome of cancer therapy-related cognitive impairment (CRCI). Neuroinflammation, particularly microglial reactivity and consequent dysregulation of hippocampal neurogenesis and oligodendrocyte lineage  ...[more]

Similar Datasets

| S-EPMC9189143 | biostudies-literature
2023-08-25 | GSE240903 | GEO
| S-EPMC8435009 | biostudies-literature
| S-EPMC5974024 | biostudies-literature
| S-EPMC7958260 | biostudies-literature
| S-EPMC7773371 | biostudies-literature
| S-EPMC7174030 | biostudies-literature
| S-EPMC10167476 | biostudies-literature
| S-EPMC7467924 | biostudies-literature
| S-EPMC11439069 | biostudies-literature