Unknown

Dataset Information

0

African swine fever virus MGF360-11L negatively regulates cGAS-STING-mediated inhibition of type I interferon production.


ABSTRACT: The type I interferon (IFN-I) signaling pathway is an important part of the innate immune response and plays a vital role in controlling and eliminating pathogens. African swine fever virus (ASFV) encodes various proteins to evade the host's natural immunity. However, the molecular mechanism by which the ASFV-encoded proteins inhibit interferon production remains poorly understood. In the present study, ASFV MGF360-11L inhibited cGAS, STING, TBK1, IKKε, IRF7 and IRF3-5D mediated activation of the IFN-β and ISRE promoters, accompanied by decreases in IFN-β, ISG15 and ISG56 mRNA expression. ASFV MGF360-11L interacted with TBK1 and IRF7, degrading TBK1 and IRF7 through the cysteine, ubiquitin-proteasome and autophagy pathways. Moreover, ASFV MGF360-11L also inhibited the phosphorylation of TBK1 and IRF3 stimulated by cGAS-STING overexpression. Truncation mutation analysis revealed that aa 167-353 of ASFV MGF360-11L could inhibit cGAS-STING-mediated activation of the IFN-β and ISRE promoters. Finally, the results indicated that ASFV MGF360-11L plays a significant role in inhibiting IL-1β, IL-6 and IFN-β production in PAM cells (PAMs) infected with ASFV. In short, these results demonstrated that ASFV MGF360-11L was involved in regulating IFN-I expression by negatively regulating the cGAS signaling pathway. In summary, this study preliminarily clarified the molecular mechanism by which the ASFV MGF360-11L protein antagonizes IFN-I-mediated antiviral activity, which will help to provide new strategies for the treatment and prevention of ASF.

SUBMITTER: Yang K 

PROVIDER: S-EPMC8785597 | biostudies-literature | 2022 Jan

REPOSITORIES: biostudies-literature

altmetric image

Publications

African swine fever virus MGF360-11L negatively regulates cGAS-STING-mediated inhibition of type I interferon production.

Yang Kaidian K   Xue Ying Y   Niu Hui H   Shi Chunwei C   Cheng Mingyang M   Wang Jianzhong J   Zou Boshi B   Wang Junhong J   Niu Tianming T   Bao Meiying M   Yang Wentao W   Zhao Dandan D   Jiang Yanlong Y   Yang Guilian G   Zeng Yan Y   Cao Xin X   Wang Chunfeng C  

Veterinary research 20220124 1


The type I interferon (IFN-I) signaling pathway is an important part of the innate immune response and plays a vital role in controlling and eliminating pathogens. African swine fever virus (ASFV) encodes various proteins to evade the host's natural immunity. However, the molecular mechanism by which the ASFV-encoded proteins inhibit interferon production remains poorly understood. In the present study, ASFV MGF360-11L inhibited cGAS, STING, TBK1, IKKε, IRF7 and IRF3-5D mediated activation of th  ...[more]

Similar Datasets

| S-EPMC8790226 | biostudies-literature
| S-EPMC10203406 | biostudies-literature
| S-EPMC9973008 | biostudies-literature
| S-EPMC9283692 | biostudies-literature
| S-EPMC7606853 | biostudies-literature
| S-EPMC9067533 | biostudies-literature
| S-EPMC11796124 | biostudies-literature
2022-02-17 | PXD027260 | Pride
| S-EPMC10688321 | biostudies-literature
| S-EPMC11811133 | biostudies-literature