Project description:Rationale: Despite extensive studies, the genetic and epigenetic mechanisms that mediate initiation and progression of lung cancers have not been fully elucidated. Previously, we have demonstrated that via complementary mechanisms, including DNA methylation, polycomb repressive complexes, and noncoding RNAs, cigarette smoke induces stem-like phenotypes that coincide with progression to malignancy in normal respiratory epithelia as well as enhanced growth and metastatic potential of lung cancer cells. Objectives: To further investigate epigenetic mechanisms contributing to stemness/pluripotency in lung cancers and potentially identify novel therapeutic targets in these malignancies, induced pluripotent stem cells were generated from normal human small airway epithelial cells. Methods: Lung induced pluripotent stem cells were generated by lentiviral transduction of small airway epithelial cells of OSKM (Yamanaka) factors (octamer-binding transcription factor 4 [Oct4], sex-determining region Y box 2 [SOX2], Kruppel-like factor 4 [KLF4], and MYC proto-oncogene, bHLH transcription factor [MYC]). Western blot, real-time polymerase chain reaction, and chromatin immunoprecipitation sequencing analysis were performed. Results: The lung induced pluripotent stem cells exhibited hallmarks of pluripotency, including morphology, surface antigen and stem cell gene expression, in vitro proliferation, and teratoma formation. In addition, lung induced pluripotent stem cells exhibited no chromosomal aberrations, complete silencing of reprogramming transgenes, genomic hypermethylation, upregulation of genes encoding components of polycomb repressive complex 2, hypermethylation of stem cell polycomb targets, and modulation of more than 15,000 other genes relative to parental small airway epithelial cells. Additional sex combs like-3 (ASXL3), encoding a polycomb repressive complex 2–associated protein not previously described in reprogrammed cells, was markedly upregulated in lung induced pluripotent stem cell as well as human small cell lung cancer lines and specimens. Overexpression of the additional sex combs like-3 gene correlated with increased genomic copy number in small cell lung cancer lines. Knock-down of the additional sex combs like-3 gene inhibited proliferation, clonogenicity, and teratoma formation by lung induced pluripotent stem cells and significantly diminished in vitro clonogenicity and growth of small cell lung cancer cells in vivo. Conclusions: Collectively, these studies highlight the potential utility of this lung induced pluripotent stem cell model for elucidating epigenetic mechanisms contributing to pulmonary carcinogenesis and suggest that additional sex combs like-3 is a novel target for small cell lung cancer therapy.
Project description:Stem cells hold significant promise for regeneration of tissue defects and disease-modifying therapies. Although numerous promising stem cell approaches are advancing in clinical trials, intraoperative stem cell therapies offer more immediate hope by integrating an autologous cell source with a well-established surgical intervention in a single procedure. Herein, the major developments in intraoperative stem cell approaches, from in vivo models to clinical studies, are reviewed, and the potential regenerative mechanisms and the roles of different cell populations in the regeneration process are discussed. Although intraoperative stem cell therapies have been shown to be safe and effective for several indications, there are still critical challenges to be tackled prior to adoption into the standard surgical armamentarium.
Project description:Stem cell therapies are being explored for the treatment of various diseases, including haematological disease, immune disease, neurodegenerative disease, and tissue injuries. Alternatively, stem cell-derived exosomes may provide similar clinical benefits without the biosafety concerns associated with the transplantation of living cells. However, large-scale manufacturing and purification, batch-to-batch variation, and analysis of the complex cargos of exosomes will need to be addressed to enable their clinical translation.
Project description:The molecular triad involving receptor activator of nuclear factor kβ (RANK)/RANK ligand (RANKL)/osteoprotegerin cytokine system has been well implicated in several physiological and pathological processes including bone metabolism, mammary gland development, regulation of the immune function, tumorigenesis and metastasis of cancer stem cell, thermoregulation, and vascular calcification. However, this review aimed to summarize several original and up-to-date articles focusing on the role of this signaling system in cancer cell development and metastasis as well as potential therapeutic agents targeting any of the three tumor necrotic factor super family proteins and/or their downstream signaling pathways. The RANK/RANKL axis has direct effects on tumor cell development. The system is well involved in the development of several primary and secondary tumors including breast cancer, prostate cancer, bone tumors, and leukemia. The signaling of this triad system has also been linked to tumor invasiveness in the advanced stage. Bone is by far the most common site of cancer metastasis. Several therapeutic agents targeting this system have been developed. Among them, a monoclonal antibody, denosumab, was clinically approved for the treatment of osteoporosis and cancer-related diseases.
Project description:Coronary artery disease is the leading cause of death in Americans. After myocardial infarction, significant ventricular damage persists despite timely reperfusion and pharmacological management. Treatment is limited, as current modalities do not cure this damage. In the past decade, stem cell therapy has emerged as a promising therapeutic solution to restore myocardial function. Clinical trials have demonstrated safety and beneficial effects in patients suffering from acute myocardial infarction, heart failure, and dilated cardiomyopathy. These benefits include improved ventricular function, increased ejection fraction, and decreased infarct size. Mechanisms of therapy are still not clearly understood. However, it is believed that paracrine factors, including stromal cell-derived factor-1, contribute significantly to stem cell benefits. The purpose of this article is to provide medical professionals with an overview on stem cell therapy for the heart and to discuss potential future directions.
Project description:Mesenchymal stem cells (MSCs) offer promising therapeutic effects for cardiac repair, primarily through their secretome, a complex array of bioactive factors with broad, multi-target effects on various cell types and pathological processes. However, current delivery and retention methods lack the ability to provide sustained, stable therapeutic benefits in ischaemic heart disease. This study addresses this limitation by introducing an innovative approach for the prolonged and clinically feasible delivery of MSC-derived secretome for cardioprotection. To evaluate the cardioprotective effects of MSC secretome in a human context, a human-iPSC-derived cardiac organoid model of simulated ischaemia-reperfusion injury was employed. Proteomic analysis of the Cymerus secretome, collected at both pre- and post-implantation, was conducted to investigate the mechanisms underlying its cardiac benefits. Proteomic analysis revealed the secretome of Cymerus comprised 3,851 proteins, with functional enrichment in pathways related to tissue homeostasis, apoptosis regulation, wound healing, and antioxidant defence . Furthermore, the post-implantation MSC secretome demonstrated an upregulation of proteins related to extracellular matrix organization, immune modulation, and tissue remodelling, indicating a temporal and adaptive response of the MSCs to ischaemic conditions.
Project description:Kidney cancer is among the top ten most common cancers to date. Within the kidney, renal cell carcinoma (RCC) is the most common solid lesion occurring. While various risk factors are suspected, including unhealthy lifestyle, age, and ethnicity, genetic mutations seem to be a key risk factor. In particular, mutations in the von Hippel-Lindau gene (Vhl) have attracted a lot of interest since this gene regulates the hypoxia inducible transcription factors HIF-1α and HIF-2α, which in turn drive the transcription of many genes that are important for renal cancer growth and progression, including genes involved in lipid metabolism and signaling. Recent data suggest that HIF-1/2 are themselves regulated by bioactive lipids which make the connection between lipids and renal cancer obvious. This review will summarize the effects and contributions of the different classes of bioactive lipids, including sphingolipids, glycosphingolipids, eicosanoids, free fatty acids, cannabinoids, and cholesterol to renal carcinoma progression. Novel pharmacological strategies interfering with lipid signaling to treat renal cancer will be highlighted.
Project description:Sickle cell disease (SCD) is a monogenic globin disorder characterized by the production of a structurally abnormal hemoglobin (Hb) variant Hb S, which causes severe hemolytic anemia, episodic painful vaso-occlusion, and ultimately end-organ damage. The primary disease pathophysiology is intracellular Hb S polymerization and consequent sickling of erythrocytes. It has become evident for more than several decades that a more complex disease process contributes to the myriad of clinical complications seen in patients with SCD with inflammation playing a central role. Drugs targeting specific inflammatory pathways therefore offer an attractive therapeutic strategy to ameliorate many of the clinical events in SCD. In addition, they are useful tools to dissect the molecular and cellular mechanisms that promote individual clinical events and for developing improved therapeutics to address more challenging clinical dilemmas such as refractoriness to opioids or hyperalgesia. Here, we discuss the prospect of targeting multiple inflammatory pathways implicated in the pathogenesis of SCD with a focus on new therapeutics, striving to link the actions of the anti-inflammatory agents to a defined pathobiology, and specific clinical manifestations of SCD. We also review the anti-inflammatory attributes and the cognate inflammatory targets of hydroxyurea, the only Food and Drug Administration-approved drug for SCD.
Project description:Over the last 20 years, different therapies have been considered as the mainstay for the treatment of patients with metastatic renal cell carcinoma (mRCC). Since angiogenesis is a key mechanism in the pathogenesis of renal carcinoma, research is still focusing on the inhibition of new vessel growth through the development of novel and potent tyrosine kinase inhibitors (TKIs), such as cabozantinib. On the other hand, a new therapeutic scenario has opened up in the forefront with immunotherapy. Immune checkpoint inhibitors (ICIs), which already represent a standard treatment option in pretreated mRCC patients, are revolutionizing the frontline therapeutic armamentarium of mRCC. Upfront combination immunotherapy as well as combinations of immunotherapy with targeted agents showed to significantly improved outcomes of mRCC patients compared to single-agent TKIs. ICIs are associated with long-lasting responses. Nonetheless, several unmet needs remain, as a small proportion of patients shows primary refractoriness to immunotherapy. Multiple treatment strategies combining different mechanisms of action or targeting immune escape pathways are emerging with the aim to improve response rates and survival outcomes. This review summarizes current immunotherapeutic targets and therapies approved for mRCC, while examining mechanisms of resistance and future directions, with the aim to address novel treatment strategies and help in improving the management of this tumor.
Project description:Stem cells are characterized by two defining features, the ability to self-renew and to differentiate into highly specialized cell types. The POU homeodomain transcription factor Oct4 (Pou5f1) is an essential mediator of the embryonic stem cell state and has been implicated in lineage specific differentiation, adult stem cell identity, and cancer. Recent description of the regulatory networks which maintain 'ES' have highlighted a dual role for Oct4 in the transcriptional activation of genes required to maintain self-renewal and pluripotency while concomitantly repressing genes which facilitate lineage specific differentiation. However, the molecular mechanism by which Oct4 mediates differential activation or repression at these loci to either maintain stem cell identity or facilitate the emergence of alternate transcriptional programs required for the realization of lineage remains to be elucidated. To further investigate Oct4 function, we employed gene expression profiling together with a robust statistical analysis to identify genes highly correlated to Oct4. Gene Ontology analysis to categorize overrepresented genes has led to the identification of themes which may prove essential to stem cell identity, including chromatin structure, nuclear architecture, cell cycle control, DNA repair, and apoptosis. Our experiments have identified previously unappreciated roles for Oct4 for firstly, regulating chromatin structure in a state consistent with self-renewal and pluripotency, and secondly, facilitating the expression of genes that keeps the cell poised to respond to cues that lead to differentiation. Together, these data define the mechanism by which Oct4 orchestrates cellular regulatory pathways to enforce the stem cell state and provides important insight into stem cell function and cancer.