Project description:BackgroundProne positioning in non-intubated spontaneously breathing patients is becoming widely applied in practice alongside noninvasive respiratory support. This systematic review and meta-analysis evaluates the effect, timing, and populations that might benefit from awake proning regarding oxygenation, mortality, and tracheal intubation compared with supine position in hypoxaemic acute respiratory failure.MethodsWe conducted a systematic literature search of PubMed/MEDLINE, Cochrane Library, Embase, CINAHL, and BMJ Best Practice until August 2021 (International Prospective Register of Systematic Reviews [PROSPERO] registration: CRD42021250322). Studies included comprise least-wise 20 adult patients with hypoxaemic respiratory failure secondary to acute respiratory distress syndrome or coronavirus disease (COVID-19). Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines were followed, and study quality was assessed using the Newcastle-Ottawa Scale and the Cochrane risk-of-bias tool.ResultsFourteen studies fulfilled the selection criteria and 2352 patients were included; of those patients, 99% (n=2332/2352) had COVID-19. Amongst 1041 (44%) patients who were placed in the prone position, 1021 were SARS-CoV-2 positive. The meta-analysis revealed significant improvement in the PaO2/FiO2 ratio (mean difference -23.10; 95% confidence interval [CI]: -34.80 to 11.39; P=0.0001; I2=26%) after prone positioning. In patients with COVID-19, lower mortality was found in the group placed in the prone position (150/771 prone vs 391/1457 supine; odds ratio [OR] 0.51; 95% CI: 0.32-0.80; P=0.003; I2=48%), but the tracheal intubation rate was unchanged (284/824 prone vs 616/1271 supine; OR 0.72; 95% CI: 0.43-1.22; P=0.220; I2=75%). Overall proning was tolerated for a median of 4 h (inter-quartile range: 2-16).ConclusionsProne positioning can improve oxygenation amongst non-intubated patients with acute hypoxaemic respiratory failure when applied for at least 4 h over repeated daily episodes. Awake proning appears safe, but the effect on tracheal intubation rate and survival remains uncertain.
Project description:BackgroundAwake prone positioning has been broadly utilised for non-intubated patients with COVID-19-related acute hypoxaemic respiratory failure, but the results from published randomised controlled trials (RCTs) in the past year are contradictory. We aimed to systematically synthesise the outcomes associated with awake prone positioning, and evaluate these outcomes in relevant subpopulations.MethodsIn this systematic review and meta-analysis, two independent groups of researchers searched MEDLINE, Embase, PubMed, Web of Science, Scopus, MedRxiv, BioRxiv, and ClinicalTrials.gov for RCTs and observational studies (with a control group) of awake prone positioning in patients with COVID-19-related acute hypoxaemic respiratory failure published in English from Jan 1, 2020, to Nov 8, 2021. We excluded trials that included patients intubated before or at enrolment, paediatric patients (ie, younger than 18 years), or trials that did not include the supine position in the control group. The same two independent groups screened studies, extracted the summary data from published reports, and assessed the risk of bias. We used a random-effects meta-analysis to pool individual studies. We used the Grading of Recommendations Assessment, Development, and Evaluation approach to assess the certainty and quality of the evidence. The primary outcome was the reported cumulative intubation risk across RCTs, and effect estimates were calculated as risk ratios (RR;95% CI). The analysis was primarily conducted on RCTs, and observational studies were used for sensitivity analyses. No serious adverse events associated with awake prone positioning were reported. The study protocol was prospectively registered with PROSPERO, CRD42021271285.FindingsA total of 1243 studies were identified, we assessed 138 full-text articles and received the aggregated results of three unpublished RCTs; therefore, after exclusions, 29 studies were included in the study. Ten were RCTs (1985 patients) and 19 were observational studies (2669 patients). In ten RCTs, awake prone positioning compared with the supine position significantly reduced the need for intubation in the overall population (RR 0·84 [95% CI 0·72-0·97]). A reduced need for intubation was shown among patients who received advanced respiratory support (ie, high-flow nasal cannula or non-invasive ventilation) at enrolment (RR 0·83 [0·71-0·97]) and in intensive care unit (ICU) settings (RR 0·83 [0·71-0·97]) but not in patients receiving conventional oxygen therapy (RR 0·87 [0·45-1·69]) or in non-ICU settings (RR 0·88 [0·44-1·76]). No obvious risk of bias and publication bias was found among the included RCTs for the primary outcome.InterpretationIn patients with COVID-19-related acute hypoxaemic respiratory failure, awake prone positioning reduced the need for intubation, particularly among those requiring advanced respiratory support and those in ICU settings. Awake prone positioning should be used in patients who have acute hypoxaemic respiratory failure due to COVID-19 and require advanced respiratory support or are treated in the ICU.FundingOpenAI, Rice Foundation, National Institute for Health Research, and Oxford Biomedical Research Centre.
Project description:BackgroundAwake prone positioning (APP) is widely used in the management of patients with coronavirus disease (COVID-19). The primary objective of this study was to compare the outcome of COVID-19 patients who received early versus late APP.MethodsPost hoc analysis of data collected for a randomized controlled trial (ClinicalTrials.gov NCT04325906). Adult patients with acute hypoxemic respiratory failure secondary to COVID-19 who received APP for at least one hour were included. Early prone positioning was defined as APP initiated within 24 h of high-flow nasal cannula (HFNC) start. Primary outcomes were 28-day mortality and intubation rate.ResultsWe included 125 patients (79 male) with a mean age of 62 years. Of them, 92 (73.6%) received early APP and 33 (26.4%) received late APP. Median time from HFNC initiation to APP was 2.25 (0.8-12.82) vs 36.35 (30.2-75.23) hours in the early and late APP group (p < 0.0001), respectively. Average APP duration was 5.07 (2.0-9.05) and 3.0 (1.09-5.64) hours per day in early and late APP group (p < 0.0001), respectively. The early APP group had lower mortality compared to the late APP group (26% vs 45%, p = 0.039), but no difference was found in intubation rate. Advanced age (OR 1.12 [95% CI 1.0-1.95], p = 0.001), intubation (OR 10.65 [95% CI 2.77-40.91], p = 0.001), longer time to initiate APP (OR 1.02 [95% CI 1.0-1.04], p = 0.047) and hydrocortisone use (OR 6.2 [95% CI 1.23-31.1], p = 0.027) were associated with increased mortality.ConclusionsEarly initiation (< 24 h of HFNC use) of APP in acute hypoxemic respiratory failure secondary to COVID-19 improves 28-day survival. Trial registration ClinicalTrials.gov NCT04325906.
Project description:Prone positioning reduces mortality in the management of intubated patients with moderate-to-severe acute respiratory distress syndrome. It allows improvement in oxygenation by improving ventilation/perfusion ratio mismatching.Because of its positive physiological effects, prone positioning has also been tested in non-intubated, spontaneously breathing patients, or "awake" prone positioning. This review provides an update on awake prone positioning for hypoxaemic respiratory failure, in both coronavirus disease 2019 (COVID-19) and non-COVID-19 patients. In non-COVID-19 acute respiratory failure, studies are limited to a few small nonrandomised studies and involved patients with different diseases. However, results have been appealing with regard to oxygenation improvement, especially when combined with noninvasive ventilation or high-flow nasal cannula.The recent COVID-19 pandemic has led to a major increase in hospitalisations for acute respiratory failure. Awake prone positioning has been used with the aim to prevent intensive care unit admission and mechanical ventilation. Prone positioning in conscious, non-intubated COVID-19 patients is used in emergency departments, medical wards and intensive care units.Several trials reported an improvement in oxygenation and respiratory rate during prone positioning, but impacts on clinical outcomes, particularly on intubation rates and survival, remain unclear. Tolerance of prolonged prone positioning is an issue. Larger controlled, randomised studies are underway to provide results concerning clinical benefit and define optimised prone positioning regimens.
Project description:The coronavirus disease (COVID-19) pandemic has brought the Italian National Health System to its knees. The abnormally high influx of patients, together with the limited resources available, has forced clinicians to make unprecedented decisions and provide compassionate treatments for which little or no evidence is yet available. This is the case for the use of noninvasive positive pressure ventilation and continuous airway pressure ventilation, combined with prone position in patients with COVID-19 and acute respiratory distress syndrome treated outside of intensive care units. In our article, we comment on the evidence available, so far, and provide a brief summary of data collected at our health institution in Piedmont, Italy.
Project description:Introduction In March and April 2020 of the COVID-19 pandemic, site clinical practice guidelines were implemented for prone positioning of awake, alert, spontaneously breathing suspected COVID-19 patients in hypoxic respiratory distress. The purpose of this pandemic disaster practice improvement project was to measure changes in pulse oximetry associated with prone positioning on awake, alert, spontaneously breathing non-intubated adult acute respiratory distress, or ARDS, patients with COVID-19 infection. Methods A retrospective chart review of ED COVID-19 positive patients from 3/30/2020 to 4/30/2020 was conducted for patients with a room air pulse oximetry < 90% and a pre-prone position pulse oximetry ? 94% who tolerated prone positioning for at least 30 minutes. The primary outcome was change in pulse oximetry associated with prone positioning, measured on room air, with supplemental oxygen, and approximately 30 minutes after initiating prone positioning. Median differences were compared with the Wilcoxon signed-rank test. Results Of the 440 COVID-19 patients, 31 met inclusion criteria. Median pulse oximetry increased as 83% (IQR= 75%-86%) on room air, 90% (IQR=89%-93%) with supplemental oxygen, and 96% (IQR=94%-98%) with prone positioning (x.xx, p<.001). 45% (N=14) were intubated during their hospital stay and 26% (N=8) of the included patients died. Conclusion In awake, alert, and spontaneously breathing patients with COVID-19, an initially low pulse oximetry reading improved with prone positioning. Future studies are needed to determine the association of prone positioning with subsequent endotracheal intubation and mortality.
Project description:The coronavirus disease (COVID-19) pandemic has significantly increased the number of patients with acute respiratory distress syndrome (ARDS), necessitating respiratory support. This strain on intensive care unit (ICU) resources forces clinicians to limit the use of mechanical ventilation by seeking novel therapeutic strategies. Awake-prone positioning appears to be a safe and tolerable intervention for non-intubated patients with hypoxemic respiratory failure. Meanwhile, several observational studies and meta-analyses have reported the early use of prone positioning in awake patients with COVID-19-related ARDS (C-ARDS) for improving oxygenation levels and preventing ICU transfers. Indeed, some international guidelines have recommended the early application of awake-prone positioning in patients with hypoxemic respiratory failure attributable to C-ARDS. However, its effectiveness in reducing intubation rate, mortality, applied timing, and optimal duration is unclear. High-quality evidence of awake-prone positioning for hypoxemic patients with COVID-19 is still lacking. Therefore, this article provides an update on the current state of published literature about the physiological rationale, effect, timing, duration, and populations that might benefit from awake proning. Moreover, the risks and adverse effects of awake-prone positioning were also investigated. This work will guide future studies and aid clinicians in deciding on better treatment plans.