Unknown

Dataset Information

0

Paracrine signal emanating from stressed cardiomyocytes aggravates inflammatory microenvironment in diabetic cardiomyopathy.


ABSTRACT: Myocardial inflammation contributes to cardiomyopathy in diabetic patients through incompletely defined underlying mechanisms. In both human and time-course experimental samples, diabetic hearts exhibited abnormal ER, with a maladaptive shift over time in rodents. Furthermore, as a cardiac ER dysfunction model, mice with cardiac-specific p21-activated kinase 2 (PAK2) deletion exhibited heightened myocardial inflammatory response in diabetes. Mechanistically, maladaptive ER stress-induced CCAAT/enhancer-binding protein homologous protein (CHOP) is a novel transcriptional regulator of cardiac high-mobility group box-1 (HMGB1). Cardiac stress-induced release of HMGB1 facilitates M1 macrophage polarization, aggravating myocardial inflammation. Therapeutically, sequestering the extracellular HMGB1 using glycyrrhizin conferred cardioprotection through its anti-inflammatory action. Our findings also indicated that an intact cardiac ER function and protective effects of the antidiabetic drug interdependently attenuated the cardiac inflammation-induced dysfunction. Collectively, we introduce an ER stress-mediated cardiomyocyte-macrophage link, altering the macrophage response, thereby providing insight into therapeutic prospects for diabetes-associated cardiac dysfunction.

SUBMITTER: Kaur N 

PROVIDER: S-EPMC8905320 | biostudies-literature | 2022 Mar

REPOSITORIES: biostudies-literature

altmetric image

Publications


Myocardial inflammation contributes to cardiomyopathy in diabetic patients through incompletely defined underlying mechanisms. In both human and time-course experimental samples, diabetic hearts exhibited abnormal ER, with a maladaptive shift over time in rodents. Furthermore, as a cardiac ER dysfunction model, mice with cardiac-specific p21-activated kinase 2 (PAK2) deletion exhibited heightened myocardial inflammatory response in diabetes. Mechanistically, maladaptive ER stress-induced CCAAT/e  ...[more]

Similar Datasets

| S-EPMC9656075 | biostudies-literature
| S-EPMC8967291 | biostudies-literature
| S-EPMC9613679 | biostudies-literature
| S-EPMC9992392 | biostudies-literature
| S-EPMC7705707 | biostudies-literature
| S-EPMC8842652 | biostudies-literature
| S-EPMC10545673 | biostudies-literature
| S-EPMC9503602 | biostudies-literature
| S-EPMC7195432 | biostudies-literature
| S-EPMC6513824 | biostudies-literature