Unknown

Dataset Information

0

HIF activation enhances FcγRIIb expression on mononuclear phagocytes impeding tumor targeting antibody immunotherapy.


ABSTRACT:

Background

Hypoxia is a hallmark of the tumor microenvironment (TME) and in addition to altering metabolism in cancer cells, it transforms tumor-associated stromal cells. Within the tumor stromal cell compartment, tumor-associated macrophages (TAMs) provide potent pro-tumoral support. However, TAMs can also be harnessed to destroy tumor cells by monoclonal antibody (mAb) immunotherapy, through antibody dependent cellular phagocytosis (ADCP). This is mediated via antibody-binding activating Fc gamma receptors (FcγR) and impaired by the single inhibitory FcγR, FcγRIIb.

Methods

We applied a multi-OMIC approach coupled with in vitro functional assays and murine tumor models to assess the effects of hypoxia inducible factor (HIF) activation on mAb mediated depletion of human and murine cancer cells. For mechanistic assessments, siRNA-mediated gene silencing, Western blotting and chromatin immune precipitation were utilized to assess the impact of identified regulators on FCGR2B gene transcription.

Results

We report that TAMs are FcγRIIbbright relative to healthy tissue counterparts and under hypoxic conditions, mononuclear phagocytes markedly upregulate FcγRIIb. This enhanced FcγRIIb expression is transcriptionally driven through HIFs and Activator protein 1 (AP-1). Importantly, this phenotype reduces the ability of macrophages to eliminate anti-CD20 monoclonal antibody (mAb) opsonized human chronic lymphocytic leukemia cells in vitro and EL4 lymphoma cells in vivo in human FcγRIIb+/+ transgenic mice. Furthermore, post-HIF activation, mAb mediated blockade of FcγRIIb can partially restore phagocytic function in human monocytes.

Conclusion

Our findings provide a detailed molecular and cellular basis for hypoxia driven resistance to antitumor mAb immunotherapy, unveiling a hitherto unexplored aspect of the TME. These findings provide a mechanistic rationale for the modulation of FcγRIIb expression or its blockade as a promising strategy to enhance approved and novel mAb immunotherapies.

SUBMITTER: Hussain K 

PROVIDER: S-EPMC8988350 | biostudies-literature | 2022 Apr

REPOSITORIES: biostudies-literature

altmetric image

Publications

HIF activation enhances FcγRIIb expression on mononuclear phagocytes impeding tumor targeting antibody immunotherapy.

Hussain Khiyam K   Liu Rena R   Smith Rosanna C G RCG   Müller Kri T J KTJ   Ghorbani Mohammadmersad M   Macari Sofia S   Cleary Kirstie L S KLS   Oldham Robert J RJ   Foxall Russell B RB   James Sonya S   Booth Steven G SG   Murray Tom T   Dahal Lekh N LN   Hargreaves Chantal E CE   Kemp Robert S RS   Longley Jemma J   Douglas James J   Markham Hannah H   Chee Serena J SJ   Stopforth Richard J RJ   Roghanian Ali A   Carter Matthew J MJ   Ottensmeier Christian H CH   Frendéus Bjorn B   Cutress Ramsey I RI   French Ruth R RR   Glennie Martin J MJ   Strefford Jonathan C JC   Thirdborough Stephen M SM   Beers Stephen A SA   Cragg Mark S MS  

Journal of experimental & clinical cancer research : CR 20220407 1


<h4>Background</h4>Hypoxia is a hallmark of the tumor microenvironment (TME) and in addition to altering metabolism in cancer cells, it transforms tumor-associated stromal cells. Within the tumor stromal cell compartment, tumor-associated macrophages (TAMs) provide potent pro-tumoral support. However, TAMs can also be harnessed to destroy tumor cells by monoclonal antibody (mAb) immunotherapy, through antibody dependent cellular phagocytosis (ADCP). This is mediated via antibody-binding activati  ...[more]

Similar Datasets

| S-EPMC6423481 | biostudies-literature
| S-EPMC10700695 | biostudies-literature
| S-EPMC3037754 | biostudies-literature
| S-EPMC5915625 | biostudies-literature
| S-EPMC4999957 | biostudies-literature
| S-EPMC10745701 | biostudies-literature
| S-EPMC8307381 | biostudies-literature
| S-EPMC2938844 | biostudies-literature
| PRJEB46461 | ENA
| S-EPMC8060508 | biostudies-literature