Unknown

Dataset Information

0

Knockdown of circ_0003928 ameliorates high glucose-induced dysfunction of human tubular epithelial cells through the miR-506-3p/HDAC4 pathway in diabetic nephropathy.


ABSTRACT:

Background

Previous data have indicated the importance of circular RNA (circRNA) in the pathogenesis of diabetic nephropathy (DN). The study is designed to investigate the effects of circ_0003928 on oxidative stress and apoptosis of high glucose (HG)-treated human tubular epithelial cells (HK-2) and the underlying mechanism.

Methods

The DN cell model was established by inducing HK-2 cells using 30 mmol/L D-glucose. RNA expression of circ_0003928, miR-506-3p and histone deacetylase 4 (HDAC4) was detected by quantitative real-time polymerase chain reaction. Cell viability and proliferation were investigated by cell counting kit-8 and 5-Ethynyl-29-deoxyuridine (EdU) assays, respectively. Oxidative stress was evaluated by commercial kits. Caspase 3 activity and cell apoptotic rate were assessed by a caspase 3 activity assay and flow cytometry analysis, respectively. Protein expression was detected by Western blotting analysis. The interactions among circ_0003928, miR-506-3p and HDAC4 were identified by dual-luciferase reporter and RNA pull-down assays.

Results

Circ_0003928 and HDAC4 expression were significantly upregulated, while miR-506-3p was downregulated in the serum of DN patients and HG-induced HK-2 cells. HG treatment inhibited HK-2 cell proliferation, but induced oxidative stress and cell apoptosis; however, these effects were reversed after circ_0003928 depletion. Circ_0003928 acted as a miR-506-3p sponge, and HDAC4 was identified as a target gene of miR-506-3p. Moreover, the circ_0003928/miR-506-3p/HDAC4 axis regulated HG-induced HK-2 cell dysfunction.

Conclusion

Circ_0003928 acted as a sponge for miR-506-3p to regulate HG-induced oxidative stress and apoptosis of HK-2 cells through HDAC4, which suggested that circ_0003928 might be helpful in the therapy of DN.

SUBMITTER: Liu Q 

PROVIDER: S-EPMC8991937 | biostudies-literature | 2022 Apr

REPOSITORIES: biostudies-literature

altmetric image

Publications

Knockdown of circ_0003928 ameliorates high glucose-induced dysfunction of human tubular epithelial cells through the miR-506-3p/HDAC4 pathway in diabetic nephropathy.

Liu Qiong Q   Cui Yuanyuan Y   Ding Nan N   Zhou Changxue C  

European journal of medical research 20220407 1


<h4>Background</h4>Previous data have indicated the importance of circular RNA (circRNA) in the pathogenesis of diabetic nephropathy (DN). The study is designed to investigate the effects of circ_0003928 on oxidative stress and apoptosis of high glucose (HG)-treated human tubular epithelial cells (HK-2) and the underlying mechanism.<h4>Methods</h4>The DN cell model was established by inducing HK-2 cells using 30 mmol/L D-glucose. RNA expression of circ_0003928, miR-506-3p and histone deacetylase  ...[more]

Similar Datasets

| S-EPMC3964498 | biostudies-literature
| S-EPMC8922934 | biostudies-literature
| S-EPMC5386454 | biostudies-literature
| S-EPMC10804928 | biostudies-literature
| S-EPMC7653251 | biostudies-literature
2024-10-31 | GSE266108 | GEO
| S-EPMC4219667 | biostudies-literature
| S-EPMC4485941 | biostudies-literature
| S-EPMC9937007 | biostudies-literature
| S-EPMC9663993 | biostudies-literature