Unknown

Dataset Information

0

INovo479: Metabolic Modeling Provides a Roadmap to Optimize Bioproduct Yield from Deconstructed Lignin Aromatics by Novosphingobium aromaticivorans.


ABSTRACT: Lignin is an abundant renewable source of aromatics and precursors for the production of other organic chemicals. However, lignin is a heterogeneous polymer, so the mixture of aromatics released during its depolymerization can make its conversion to chemicals challenging. Microbes are a potential solution to this challenge, as some can catabolize multiple aromatic substrates into one product. Novosphingobium aromaticivorans has this ability, and its use as a bacterial chassis for lignin valorization could be improved by the ability to predict product yields based on thermodynamic and metabolic inputs. In this work, we built a genome-scale metabolic model of N. aromaticivorans, iNovo479, to guide the engineering of strains for aromatic conversion into products. iNovo479 predicted product yields from single or multiple aromatics, and the impact of combinations of aromatic and non-aromatic substrates on product yields. We show that enzyme reactions from other organisms can be added to iNovo479 to predict the feasibility and profitability of producing additional products by engineered strains. Thus, we conclude that iNovo479 can help guide the design of bacteria to convert lignin aromatics into valuable chemicals.

SUBMITTER: Linz AM 

PROVIDER: S-EPMC9028409 | biostudies-literature | 2022 Apr

REPOSITORIES: biostudies-literature

altmetric image

Publications

iNovo479: Metabolic Modeling Provides a Roadmap to Optimize Bioproduct Yield from Deconstructed Lignin Aromatics by <i>Novosphingobium aromaticivorans</i>.

Linz Alexandra M AM   Ma Yanjun Y   Scholz Samuel S   Noguera Daniel R DR   Donohue Timothy J TJ  

Metabolites 20220418 4


Lignin is an abundant renewable source of aromatics and precursors for the production of other organic chemicals. However, lignin is a heterogeneous polymer, so the mixture of aromatics released during its depolymerization can make its conversion to chemicals challenging. Microbes are a potential solution to this challenge, as some can catabolize multiple aromatic substrates into one product. <i>Novosphingobium aromaticivorans</i> has this ability, and its use as a bacterial chassis for lignin v  ...[more]

Similar Datasets

2024-02-29 | GSE259365 | GEO
| S-EPMC11323797 | biostudies-literature
| S-EPMC10734531 | biostudies-literature
| S-EPMC10807440 | biostudies-literature
| S-EPMC6210112 | biostudies-literature
2025-02-20 | GSE290086 | GEO
| S-EPMC11837543 | biostudies-literature
| S-EPMC8612281 | biostudies-literature
| S-EPMC3151139 | biostudies-literature
2021-05-22 | GSE174697 | GEO