Unknown

Dataset Information

0

Introduction of Lazy Luna an automatic software-driven multilevel comparison of ventricular function quantification in cardiovascular magnetic resonance imaging.


ABSTRACT: Cardiovascular magnetic resonance imaging is the gold standard for cardiac function assessment. Quantification of clinical results (CR) requires precise segmentation. Clinicians statistically compare CRs to ensure reproducibility. Convolutional Neural Network developers compare their results via metrics. Aim: Introducing software capable of automatic multilevel comparison. A multilevel analysis covering segmentations and CRs builds on a generic software backend. Metrics and CRs are calculated with geometric accuracy. Segmentations and CRs are connected to track errors and their effects. An interactive GUI makes the software accessible to different users. The software's multilevel comparison was tested on a use case based on cardiac function assessment. The software shows good reader agreement in CRs and segmentation metrics (Dice > 90%). Decomposing differences by cardiac position revealed excellent agreement in midventricular slices: > 90% but poorer segmentations in apical (> 71%) and basal slices (> 74%). Further decomposition by contour type locates the largest millilitre differences in the basal right cavity (> 3 ml). Visual inspection shows these differences being caused by different basal slice choices. The software illuminated reader differences on several levels. Producing spreadsheets and figures concerning metric values and CR differences was automated. A multilevel reader comparison is feasible and extendable to other cardiac structures in the future.

SUBMITTER: Hadler T 

PROVIDER: S-EPMC9033783 | biostudies-literature | 2022 Apr

REPOSITORIES: biostudies-literature

altmetric image

Publications

Introduction of Lazy Luna an automatic software-driven multilevel comparison of ventricular function quantification in cardiovascular magnetic resonance imaging.

Hadler Thomas T   Wetzl Jens J   Lange Steffen S   Geppert Christian C   Fenski Max M   Abazi Endri E   Gröschel Jan J   Ammann Clemens C   Wenson Felix F   Töpper Agnieszka A   Däuber Sascha S   Schulz-Menger Jeanette J  

Scientific reports 20220422 1


Cardiovascular magnetic resonance imaging is the gold standard for cardiac function assessment. Quantification of clinical results (CR) requires precise segmentation. Clinicians statistically compare CRs to ensure reproducibility. Convolutional Neural Network developers compare their results via metrics. Aim: Introducing software capable of automatic multilevel comparison. A multilevel analysis covering segmentations and CRs builds on a generic software backend. Metrics and CRs are calculated wi  ...[more]

Similar Datasets

| S-EPMC2831022 | biostudies-literature
| S-EPMC7077164 | biostudies-literature
| S-EPMC6383230 | biostudies-literature
| S-EPMC10220421 | biostudies-literature
| S-EPMC8844403 | biostudies-literature
| S-EPMC11409793 | biostudies-literature
| S-EPMC9998324 | biostudies-literature
| S-EPMC8349849 | biostudies-literature
| S-EPMC6349335 | biostudies-literature
| S-EPMC6449752 | biostudies-literature