Unknown

Dataset Information

0

Hydroxyl ions: flexible tailoring of Cu2O crystal morphology.


ABSTRACT: The precise control architectures of Cu2O crystals are very crucial, which have a significant influence on their various performances. Herein, Cu2O crystals with diverse architectures were achieved via finely adjusting the concentration of NaOH. The intriguing results showed that the addition of specific amounts of OH- to the solution was crucial to tailor the morphology and size of the resulting microcrystals. We observed the evolution of the shapes of the Cu2O microcrystals, which change from a rhombic dodecahedron to spherical, octahedral-like and then to hexapod upon the increase in the NaOH concentration. Adjusting the volume of NaOH added provides a means to vary the particle size. Furthermore, density functional theory (DFT) may reveal that OH- ions serve as an efficient coordination agent selectively adsorbing onto different crystal faces of Cu2O crystals modifying the crystal energies, inducing the structure anisotropy on crystal growth. This work reveals that an effective and facile strategy has been developed for morphology-control of Cu2O crystals.

SUBMITTER: Yang X 

PROVIDER: S-EPMC9043987 | biostudies-literature | 2021 Nov

REPOSITORIES: biostudies-literature

altmetric image

Publications

Hydroxyl ions: flexible tailoring of Cu<sub>2</sub>O crystal morphology.

Yang Xiaodong X   Li Jia J   Yao Jianhua J   Ren Tianrui T   Zhang Bo B  

RSC advances 20211124 60


The precise control architectures of Cu<sub>2</sub>O crystals are very crucial, which have a significant influence on their various performances. Herein, Cu<sub>2</sub>O crystals with diverse architectures were achieved <i>via</i> finely adjusting the concentration of NaOH. The intriguing results showed that the addition of specific amounts of OH<sup>-</sup> to the solution was crucial to tailor the morphology and size of the resulting microcrystals. We observed the evolution of the shapes of th  ...[more]

Similar Datasets

| S-EPMC9237086 | biostudies-literature
| S-EPMC10410748 | biostudies-literature
| S-EPMC6567064 | biostudies-literature
| S-EPMC9083334 | biostudies-literature
| S-EPMC8979049 | biostudies-literature
| S-EPMC8519910 | biostudies-literature
| S-EPMC9419253 | biostudies-literature
| S-EPMC9824464 | biostudies-literature
| S-EPMC5301806 | biostudies-literature
| S-EPMC7336805 | biostudies-literature