Unknown

Dataset Information

0

Platinum free thermally curable siloxanes for optoelectronic application - synthesis and properties.


ABSTRACT: Polysiloxanes for applications in the area of optical devices are usually based on two-component platinum catalysed cross-linked materials. Here we report the synthesis and properties of a novel one-component siloxane that can be thermally cured showing similar tailorable properties like commercially available encapsulation systems without using a noble metal catalyst. The pre-curing material is formed by an acid catalysed condensation reaction of trialkoxysilanes (TAS), dialkoxysilanes (DAS) and alkoxy-terminated polysiloxanes. NMR analysis of the formed polymeric compounds reveal that the materials are partially cross-linked gels. The obtained compounds can be thermally cured and consolidated at temperatures between 160 and 200 °C. Depending on the composition a tuneable hardness in between 50-90 Shore A, refractive indices of 1.494-1.505, as well as high temperature stabilities up to 443 °C were obtained. The high thermal- and photostability, the high transparency, as well as the tailorable refractive index makes these materials to ideal systems for optoelectronic applications. Investigations under increased temperatures and high-density illumination reveal that the material can withstand conditions, which are typical for high-performance light emitting diodes (LED).

SUBMITTER: Steinbruck N 

PROVIDER: S-EPMC9059854 | biostudies-literature | 2019 Jan

REPOSITORIES: biostudies-literature

altmetric image

Publications

Platinum free thermally curable siloxanes for optoelectronic application - synthesis and properties.

Steinbrück Nils N   Pohl Svenja S   Kickelbick Guido G  

RSC advances 20190117 4


Polysiloxanes for applications in the area of optical devices are usually based on two-component platinum catalysed cross-linked materials. Here we report the synthesis and properties of a novel one-component siloxane that can be thermally cured showing similar tailorable properties like commercially available encapsulation systems without using a noble metal catalyst. The pre-curing material is formed by an acid catalysed condensation reaction of trialkoxysilanes (TAS), dialkoxysilanes (DAS) an  ...[more]

Similar Datasets

| S-EPMC7199925 | biostudies-literature
| S-EPMC11547749 | biostudies-literature
| S-EPMC8928497 | biostudies-literature
| S-EPMC4256975 | biostudies-literature
| S-EPMC6648756 | biostudies-literature
| S-EPMC6902851 | biostudies-literature
| S-EPMC9253025 | biostudies-literature
| S-EPMC10946824 | biostudies-literature
| S-EPMC4201053 | biostudies-literature
| S-EPMC8694774 | biostudies-literature