Unknown

Dataset Information

0

Construction and characterization of two SARS-CoV-2 minigenome replicon systems.


ABSTRACT: The ongoing COVID-19 pandemic severely impacts global public health and economies. To facilitate research on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virology and antiviral discovery, a noninfectious viral replicon system operating under biosafety level 2 containment is warranted. We report herein the construction and characterization of two SARS-CoV-2 minigenome replicon systems. First, we constructed the IVT-CoV2-Rep complementary DNA template to generate a replicon messenger RNA (mRNA) with nanoluciferase (NLuc) reporter via in vitro transcription (IVT). The replicon mRNA transfection assay demonstrated a rapid and transient replication of IVT-CoV2-Rep in a variety of cell lines, which could be completely abolished by known SARS-CoV-2 replication inhibitors. Our data also suggest that the transient phenotype of IVT-CoV2-Rep is not due to host innate antiviral responses. In addition, we have developed a DNA-launched replicon BAC-CoV2-Rep, which supports the in-cell transcription of a replicon mRNA as initial replication template. The BAC-CoV2-Rep transient transfection system exhibited a much stronger and longer replicon signal compared to the IVT-CoV2-Rep version. We also found that a portion of the NLuc reporter signal was derived from the spliced BAC-CoV2-Rep mRNA and was resistant to antiviral treatment, especially during the early phase after transfection. In summary, the established SARS-CoV-2 transient replicon systems are suitable for basic and antiviral research, and hold promise for stable replicon cell line development with further optimization.

SUBMITTER: Zhang H 

PROVIDER: S-EPMC9088700 | biostudies-literature | 2022 Jun

REPOSITORIES: biostudies-literature

altmetric image

Publications

Construction and characterization of two SARS-CoV-2 minigenome replicon systems.

Zhang Hu H   Fischer Douglas K DK   Shuda Masahiro M   Moore Patrick S PS   Gao Shou-Jiang SJ   Ambrose Zandrea Z   Guo Haitao H  

Journal of medical virology 20220219 6


The ongoing COVID-19 pandemic severely impacts global public health and economies. To facilitate research on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virology and antiviral discovery, a noninfectious viral replicon system operating under biosafety level 2 containment is warranted. We report herein the construction and characterization of two SARS-CoV-2 minigenome replicon systems. First, we constructed the IVT-CoV2-Rep complementary DNA template to generate a replicon messeng  ...[more]

Similar Datasets

| S-EPMC8387049 | biostudies-literature
| S-EPMC9584447 | biostudies-literature
| S-EPMC5660472 | biostudies-literature
| S-EPMC8295919 | biostudies-literature
| S-EPMC7838314 | biostudies-literature
| S-EPMC7670965 | biostudies-literature
| S-BSST379 | biostudies-other
| S-EPMC8053989 | biostudies-literature
| S-EPMC9424123 | biostudies-literature
| S-EPMC8900913 | biostudies-literature