Project description:Genomic sequencing provides critical information to track the evolution and spread of SARS-CoV-2, optimize molecular tests, treatments and vaccines, and guide public health responses. To investigate the spatiotemporal heterogeneity in the global SARS-CoV-2 genomic surveillance, we estimated the impact of sequencing intensity and turnaround times (TAT) on variant detection in 167 countries. Most countries submit genomes >21 days after sample collection, and 77% of low and middle income countries sequenced <0.5% of their cases. We found that sequencing at least 0.5% of the cases, with a TAT <21 days, could be a benchmark for SARS-CoV-2 genomic surveillance efforts. Socioeconomic inequalities substantially impact our ability to quickly detect SARS-CoV-2 variants, and undermine the global pandemic preparedness.
Project description:Genomic sequencing is essential to track the evolution and spread of SARS-CoV-2, optimize molecular tests, treatments, vaccines, and guide public health responses. To investigate the global SARS-CoV-2 genomic surveillance, we used sequences shared via GISAID to estimate the impact of sequencing intensity and turnaround times on variant detection in 189 countries. In the first two years of the pandemic, 78% of high-income countries sequenced >0.5% of their COVID-19 cases, while 42% of low- and middle-income countries reached that mark. Around 25% of the genomes from high income countries were submitted within 21 days, a pattern observed in 5% of the genomes from low- and middle-income countries. We found that sequencing around 0.5% of the cases, with a turnaround time <21 days, could provide a benchmark for SARS-CoV-2 genomic surveillance. Socioeconomic inequalities undermine the global pandemic preparedness, and efforts must be made to support low- and middle-income countries improve their local sequencing capacity.
Project description:SARS-CoV-2 has spread rapidly around the world, with Brazil currently considered an epicenter of the pandemic. The Northern region has the second highest incidence coefficient, as well as the third highest mortality rate in the country. This study aimed to investigate information about the evolutionary history of epidemic spread and genetic aspects of strains isolated on the Western Amazon, in the State of Rondônia, Brazil. It was possible to detect a total of 22 mutations. Some of these alterations may possibly be related to effects on transmissibility, the fidelity of RNA replication, the ability of cancer patients to respond to infection, beyond a mutation that emerged after the introduction of SARS-CoV-2 in Rondônia. At least two events of introduction were detected, corresponding to the B.1 and B.1.1 European lineages. An introduction was observed possibly through Argentina, where strains originated that circulated in the Minas Gerais and Ceará Brazilian states, prior to Rondônia (B.1.), as well as through the Minas Gerais state and the Federal District, which gave rise to strains that spread to Rondônia, from the capital to more rural parts of the state (B.1.1.). The findings show the need to monitor the genetic epidemiology of COVID-19, in order to surveil the virus's evolution, dispersion and diversity.
Project description:ObjectiveThe aim of this study was to carry out whole-genome sequencing (WGS) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), using samples collected from Congolese individuals between April and July 2020.MethodsNinety-six samples were screened for SARS-CoV-2 using RT-PCR, and 19 samples with Ct values <30 were sequenced using Illumina Next-Generation Sequencing (NGS). The genomes were annotated and screened for mutations using the web tool 'coronapp'. Subsequently, different SARS-CoV-2 lineages were assigned using PANGOLIN and Nextclade.ResultsEleven SARS-CoV-2 genomes were successfully sequenced and submitted to the GSAID database. All genomes carried the spike mutation D614G and were classified as part of the GH clade. The Congolese SARS-CoV-2 sequences were shown to belong to lineage B1 and Nextclade 20A and 20C, which split them into distinct clusters, indicating two separate introductions of the virus into the Republic of Congo.ConclusionThis first study provides valuable information on SARS CoV-2 transmission in the central African region, contributing to SARS CoV-2 surveillance on a temporal and spatial scale.
Project description:During the first wave of infections, neurological symptoms in Coronavirus Disease 2019 (COVID-19) patients raised particular concern, suggesting that, in a subset of patients, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) could invade and damage cells of the central nervous system (CNS). Indeed, up to date several in vitro and in vivo studies have shown the ability of SARS-CoV-2 to reach the CNS. Both viral and/or host related features could explain why this occurs only in certain individuals and not in all the infected population. The aim of the present study was to evaluate if onset of neurological manifestations in COVID-19 patients was related to specific viral genomic signatures. To this end, viral genome was extracted directly from nasopharyngeal swabs of selected SARS-CoV-2 positive patients presenting a spectrum of neurological symptoms related to COVID-19, ranging from anosmia/ageusia to more severe symptoms. By adopting a whole genome sequences approach, here we describe a panel of known as well as unknown mutations detected in the analyzed SARS-CoV-2 genomes. While some of the found mutations were already associated with an improved viral fitness, no common signatures were detected when comparing viral sequences belonging to specific groups of patients. In conclusion, our data support the notion that COVID-19 neurological manifestations are mainly linked to patient-specific features more than to virus genomic peculiarities.
Project description:The SARS-CoV-2 responsible for the ongoing COVID pandemic reveals particular evolutionary dynamics and an extensive polymorphism, mainly in Spike gene. Monitoring the S gene mutations is crucial for successful controlling measures and detecting variants that can evade vaccine immunity. Even after the costs reduction resulting from the pandemic, the new generation sequencing methodologies remain unavailable to a large number of scientific groups. Therefore, to support the urgent surveillance of SARS-CoV-2 S gene, this work describes a new feasible protocol for complete nucleotide sequencing of the S gene using the Sanger technique. Such a methodology could be easily adopted by any laboratory with experience in sequencing, adding to effective surveillance of SARS-CoV-2 spreading and evolution.