Unknown

Dataset Information

0

Enhanced Light Absorption and Efficient Carrier Collection in MoS2 Monolayers on Au Nanopillars


ABSTRACT: We fabricated hybrid nanostructures consisting of MoS2 monolayers and Au nanopillar (Au-NP) arrays. The surface morphology and Raman spectra showed that the MoS2 flakes transferred onto the Au-NPs were very flat and nonstrained. The Raman and photoluminescence intensities of MoS2/Au-NP were 3- and 20-fold larger than those of MoS2 flakes on a flat Au thin film, respectively. The finite-difference time-domain calculations showed that the Au-NPs significantly concentrated the incident light near their surfaces, leading to broadband absorption enhancement in the MoS2 flakes. Compared with a flat Au thin film, the Au-NPs enabled a 6-fold increase in the absorption in the MoS2 monolayer at a wavelength of 615 nm. The contact potential difference mapping showed that the electric potential at the MoS2/Au contact region was higher than that of the suspended MoS2 region by 85 mV. Such potential modulation enabled the Au-NPs to efficiently collect photogenerated electrons from the MoS2 flakes, as revealed by the uniform positive surface photovoltage signals throughout the MoS2 surface.

SUBMITTER: Song J 

PROVIDER: S-EPMC9104364 | biostudies-literature | 2022 May

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC6783531 | biostudies-literature
| S-EPMC10667329 | biostudies-literature
| S-EPMC8552476 | biostudies-literature
| S-EPMC9635436 | biostudies-literature
| S-EPMC9219418 | biostudies-literature
| S-EPMC7846580 | biostudies-literature
| S-EPMC9755297 | biostudies-literature
| S-EPMC11013652 | biostudies-literature
| S-EPMC4763232 | biostudies-literature
| S-EPMC9418562 | biostudies-literature