Unknown

Dataset Information

0

Integration of Face-to-Face Screening With Real-time Machine Learning to Predict Risk of Suicide Among Adults.


ABSTRACT:

Importance

Understanding the differences and potential synergies between traditional clinician assessment and automated machine learning might enable more accurate and useful suicide risk detection.

Objective

To evaluate the respective and combined abilities of a real-time machine learning model and the Columbia Suicide Severity Rating Scale (C-SSRS) to predict suicide attempt (SA) and suicidal ideation (SI).

Design, setting, and participants

This cohort study included encounters with adult patients (aged ≥18 years) at a major academic medical center. The C-SSRS was administered during routine care, and a Vanderbilt Suicide Attempt and Ideation Likelihood (VSAIL) prediction was generated in the electronic health record. Encounters took place in the inpatient, ambulatory surgical, and emergency department settings. Data were collected from June 2019 to September 2020.

Main outcomes and measures

Primary outcomes were the incidence of SA and SI, encoded as International Classification of Diseases codes, occurring within various time periods after an index visit. We evaluated the retrospective validity of the C-SSRS, VSAIL, and ensemble models combining both. Discrimination metrics included area under the receiver operating curve (AUROC), area under the precision-recall curve (AUPR), sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV).

Results

The cohort included 120 398 unique index visits for 83 394 patients (mean [SD] age, 51.2 [20.6] years; 38 107 [46%] men; 45 273 [54%] women; 13 644 [16%] Black; 63 869 [77%] White). Within 30 days of an index visit, the combined models had higher AUROC (SA: 0.874-0.887; SI: 0.869-0.879) than both the VSAIL (SA: 0.729; SI: 0.773) and C-SSRS (SA: 0.823; SI: 0.777) models. In the highest risk-decile, ensemble methods had PPV of 1.3% to 1.4% for SA and 8.3% to 8.7% for SI and sensitivity of 77.6% to 79.5% for SA and 67.4% to 70.1% for SI, outperforming VSAIL (PPV for SA: 0.4%; PPV for SI: 3.9%; sensitivity for SA: 28.8%; sensitivity for SI: 35.1%) and C-SSRS (PPV for SA: 0.5%; PPV for SI: 3.5%; sensitivity for SA: 76.6%; sensitivity for SI: 68.8%).

Conclusions and relevance

In this study, suicide risk prediction was optimal when leveraging both in-person screening (for acute measures of risk in patient-reported suicidality) and historical EHR data (for underlying clinical factors that can quantify a patient's passive risk level). To improve suicide risk classification, prediction systems could combine pretrained machine learning with structured clinician assessment without needing to retrain the original model.

SUBMITTER: Wilimitis D 

PROVIDER: S-EPMC9107032 | biostudies-literature | 2022 May

REPOSITORIES: biostudies-literature

altmetric image

Publications

Integration of Face-to-Face Screening With Real-time Machine Learning to Predict Risk of Suicide Among Adults.

Wilimitis Drew D   Turer Robert W RW   Ripperger Michael M   McCoy Allison B AB   Sperry Sarah H SH   Fielstein Elliot M EM   Kurz Troy T   Walsh Colin G CG  

JAMA network open 20220502 5


<h4>Importance</h4>Understanding the differences and potential synergies between traditional clinician assessment and automated machine learning might enable more accurate and useful suicide risk detection.<h4>Objective</h4>To evaluate the respective and combined abilities of a real-time machine learning model and the Columbia Suicide Severity Rating Scale (C-SSRS) to predict suicide attempt (SA) and suicidal ideation (SI).<h4>Design, setting, and participants</h4>This cohort study included enco  ...[more]

Similar Datasets

| S-EPMC9274320 | biostudies-literature
2020-10-27 | PXD017673 | Pride
| S-EPMC10291825 | biostudies-literature
| S-EPMC6363645 | biostudies-literature
| S-EPMC10308016 | biostudies-literature
| S-EPMC10938661 | biostudies-literature
| S-EPMC10868597 | biostudies-literature
| S-EPMC9387201 | biostudies-literature
| S-EPMC5241809 | biostudies-literature
| S-EPMC6520141 | biostudies-literature