Unknown

Dataset Information

0

ADataViewer: exploring semantically harmonized Alzheimer's disease cohort datasets.


ABSTRACT:

Background

Currently, Alzheimer's disease (AD) cohort datasets are difficult to find and lack across-cohort interoperability, and the actual content of publicly available datasets often only becomes clear to third-party researchers once data access has been granted. These aspects severely hinder the advancement of AD research through emerging data-driven approaches such as machine learning and artificial intelligence and bias current data-driven findings towards the few commonly used, well-explored AD cohorts. To achieve robust and generalizable results, validation across multiple datasets is crucial.

Methods

We accessed and systematically investigated the content of 20 major AD cohort datasets at the data level. Both, a medical professional and a data specialist, manually curated and semantically harmonized the acquired datasets. Finally, we developed a platform that displays vital information about the available datasets.

Results

Here, we present ADataViewer, an interactive platform that facilitates the exploration of 20 cohort datasets with respect to longitudinal follow-up, demographics, ethnoracial diversity, measured modalities, and statistical properties of individual variables. It allows researchers to quickly identify AD cohorts that meet user-specified requirements for discovery and validation studies regarding available variables, sample sizes, and longitudinal follow-up. Additionally, we publish the underlying variable mapping catalog that harmonizes 1196 unique variables across the 20 cohorts and paves the way for interoperable AD datasets.

Conclusions

In conclusion, ADataViewer facilitates fast, robust data-driven research by transparently displaying cohort dataset content and supporting researchers in selecting datasets that are suited for their envisioned study. The platform is available at https://adata.scai.fraunhofer.de/ .

SUBMITTER: Salimi Y 

PROVIDER: S-EPMC9123725 | biostudies-literature | 2022 May

REPOSITORIES: biostudies-literature

altmetric image

Publications

ADataViewer: exploring semantically harmonized Alzheimer's disease cohort datasets.

Salimi Yasamin Y   Domingo-Fernández Daniel D   Bobis-Álvarez Carlos C   Hofmann-Apitius Martin M   Birkenbihl Colin C  

Alzheimer's research & therapy 20220521 1


<h4>Background</h4>Currently, Alzheimer's disease (AD) cohort datasets are difficult to find and lack across-cohort interoperability, and the actual content of publicly available datasets often only becomes clear to third-party researchers once data access has been granted. These aspects severely hinder the advancement of AD research through emerging data-driven approaches such as machine learning and artificial intelligence and bias current data-driven findings towards the few commonly used, we  ...[more]

Similar Datasets

| S-EPMC8254111 | biostudies-literature
| S-EPMC9371447 | biostudies-literature
| S-EPMC11191441 | biostudies-literature
| S-EPMC7720865 | biostudies-literature
| S-EPMC9873630 | biostudies-literature
| PRJNA1241342 | ENA
| PRJNA1241341 | ENA
| S-EPMC11741457 | biostudies-literature
| PRJNA683625 | ENA
| S-EPMC5820610 | biostudies-literature