Unknown

Dataset Information

0

Allele expression biases in mixed-ploid sugarcane accessions.


ABSTRACT: Allele-specific expression (ASE) represents differences in the magnitude of expression between alleles of the same gene. This is not straightforward for polyploids, especially autopolyploids, as knowledge about the dose of each allele is required for accurate estimation of ASE. This is the case for the genomically complex Saccharum species, characterized by high levels of ploidy and aneuploidy. We used a Beta-Binomial model to test for allelic imbalance in Saccharum, with adaptations for mixed-ploid organisms. The hierarchical Beta-Binomial model was used to test if allele expression followed the expectation based on genomic allele dosage. The highest frequencies of ASE occurred in sugarcane hybrids, suggesting a possible influence of interspecific hybridization in these genotypes. For all accessions, genes showing ASE (ASEGs) were less frequent than those with balanced allelic expression. These genes were related to a broad range of processes, mostly associated with general metabolism, organelles, responses to stress and responses to stimuli. In addition, the frequency of ASEGs in high-level functional terms was similar among the genotypes, with a few genes associated with more specific biological processes. We hypothesize that ASE in Saccharum is largely a genotype-specific phenomenon, as a large number of ASEGs were exclusive to individual accessions.

SUBMITTER: Correr FH 

PROVIDER: S-EPMC9130122 | biostudies-literature | 2022 May

REPOSITORIES: biostudies-literature

altmetric image

Publications

Allele expression biases in mixed-ploid sugarcane accessions.

Correr Fernando Henrique FH   Furtado Agnelo A   Franco Garcia Antonio Augusto AA   Henry Robert James RJ   Rodrigues Alves Margarido Gabriel G  

Scientific reports 20220524 1


Allele-specific expression (ASE) represents differences in the magnitude of expression between alleles of the same gene. This is not straightforward for polyploids, especially autopolyploids, as knowledge about the dose of each allele is required for accurate estimation of ASE. This is the case for the genomically complex Saccharum species, characterized by high levels of ploidy and aneuploidy. We used a Beta-Binomial model to test for allelic imbalance in Saccharum, with adaptations for mixed-p  ...[more]

Similar Datasets

| S-EPMC8805727 | biostudies-literature
| S-EPMC5551020 | biostudies-literature
| S-EPMC2788925 | biostudies-literature
| S-EPMC6964845 | biostudies-literature
| S-EPMC10623450 | biostudies-literature
| S-EPMC10770483 | biostudies-literature
2009-10-22 | GSE18156 | GEO
2009-10-22 | E-GEOD-18156 | biostudies-arrayexpress
| S-EPMC10064762 | biostudies-literature
| S-EPMC9875459 | biostudies-literature