Project description:Treatment of non-small cell lung cancer (NSCLC) has undergone a paradigm shift. Once a disease with limited potential therapies, treatment options for patients have exploded with the availability of molecular testing to direct management and targeted therapies to treat tumors with specific driver mutations. New in vitro diagnostics allow for the early and non-invasive detection of disease, and emerging in vivo imaging techniques allow for better detection and monitoring. The development of checkpoint inhibitor immunotherapy has arguably been the biggest advance in lung cancer treatment, given that the vast majority of NSCLC tumors can be treated with these therapies. Specific targeted therapies, including those against KRAS, EGFR, RTK, and others have also improved the outcomes for those individuals bearing an actionable mutation. New and emerging therapies, such as bispecific antibodies, CAR T cell therapy, and molecular targeted radiotherapy, offer promise to patients for whom none of the existing therapies have proved effective. In this review, we provide the most up-to-date survey to our knowledge regarding emerging diagnostic and therapeutic strategies for lung cancer to provide clinicians with a comprehensive reference of the options for treatment available now and those which are soon to come.
Project description:Conventional cancer drug development has long been limited to organ- or tissue-specific cancer types. However, it has become increasingly known that specific genetic abnormalities are responsible for the carcinogenesis of multiple cancers. The recent US Food and Drug Administration (FDA) approval of the first multi-cancer drug, Keytruda, has demonstrated the feasibility of developing new drugs that target multiple cancers. Despite a promising future, methodological development for identifying multi-cancer molecular targets remains encumbered. This study developed a novel machine learning approach to identify such genes responsible for multiple cancers by synthesizing salient genomic information from cancer-specific classification models. This approach centered on the cross-cancer prediction method for identifying groups of cancers with high cross-cancer predictability. Furthermore, a robust hybrid classifier, comprising Prediction Analysis for Microarrays and Random Forest, was developed to integrate predictive models for gene inference. This approach has successfully identified key genes shared by endometrial cancer, mammary gland ductal carcinoma, and small cell lung cancer. The results are supported by published experimental evidence. This framework holds potential to transform the current methods of discovering multi-cancer molecular targets for clinical oncology.
Project description:Adequate skeletal muscle plasticity is an essential element for our well-being, and compromised muscle function can drastically affect quality of life, morbidity, and mortality. Surprisingly, however, skeletal muscle remains one of the most under-medicated organs. Interventions in muscle diseases are scarce, not only in neuromuscular dystrophies, but also in highly prevalent secondary wasting pathologies such as sarcopenia and cachexia. Even in other diseases that exhibit a well-established risk correlation of muscle dysfunction due to a sedentary lifestyle, such as type 2 diabetes or cardiovascular pathologies, current treatments are mostly targeted on non-muscle tissues. In recent years, a renewed focus on skeletal muscle has led to the discovery of various novel drug targets and the design of new pharmacological approaches. This review provides an overview of the current knowledge of the key mechanisms involved in muscle wasting conditions and novel pharmacological avenues that could ameliorate muscle diseases.
Project description:A major goal of contemporary epilepsy research is the identification of therapies to prevent the development of recurrent seizures in individuals at risk, including those with brain injuries, infections, or neoplasms; status epilepticus; cortical dysplasias; or genetic epilepsy susceptibility. In this review we consider the evidence largely from preclinical models for the antiepileptogenic activity of a diverse range of potential therapies, including some marketed antiseizure drugs, as well as agents that act by immune and inflammatory mechanisms; reduction of oxidative stress; activation of the mammalian target of rapamycin or peroxisome proliferator-activated receptors γ pathways; effects on factors related to thrombolysis, hematopoesis, and angiogenesis; inhibition of 3-hydroxy-3-methylglutaryl-coenzyme A reducatase; brain-derived neurotrophic factor signaling; and blockade of α2 adrenergic and cannabinoid receptors. Antiepileptogenesis refers to a therapy of which the beneficial action is to reduce seizure frequency or severity outlasting the treatment period. To date, clinical trials have failed to demonstrate that antiseizure drugs have such disease-modifying activity. However, studies in animal models with levetiracetam and ethosuximide are encouraging, and clinical trials with these agents are warranted. Other promising strategies are inhibition of interleukin 1β signaling by drugs such as VX-765; modulation of sphingosine 1-phosphate signaling by drugs such as fingolimod; activation of the mammalian target of rapamycin by drugs such as rapamycin; the hormone erythropoietin; and, paradoxically, drugs such as the α2 adrenergic receptor antagonist atipamezole and the CB1 cannabinoid antagonist SR141716A (rimonabant) with proexcitatory activity. These approaches could lead to a new paradigm in epilepsy drug therapy where treatment for a limited period prevents the occurrence of spontaneous seizures, thus avoiding lifelong commitment to symptomatic treatment.
Project description:Prostate cancer is a leading cause of cancer death in men in developed countries. While early stage disease can often be cured, many patients eventually develop castration resistant prostate cancer (CRPC). The majority of CRPC patients have bone metastases, which cause significant morbidity and mortality. Although there is no cure for prostate cancer metastatic to bone, several bone-targeted agents have been approved to prevent skeletal-related events (SREs). Among them, bisphosphonates were the first class of drugs investigated for prevention of SREs. Denosumab is a recently approved agent that binds to the receptor activator of nuclear factor-κB ligand (RANKL) as a humanized monoclonal antibody. Both agents target prostate cancer skeletal metastasis through the inhibition of bone resorption. Alpharadin is the first radiopharmaceutical agent that has significant overall survival benefit. It has benefits in pain palliation and SREs as well. Another newly approved drug is Abiraterone acetate, which decreases circulating levels of testosterone by targeting an enzyme expressed in the testis and the adrenal, as well as in prostate cancer tissues. This review outlines the clinical and preclinical data supporting the use of these and new agents in development for CRPC with bone metastasis.
Project description:Until recently, three classes of medical therapy were available for the treatment of pulmonary arterial hypertension (PAH)--prostanoids, endothelin receptor antagonists and phosphodiesterase type 5 (PDE5) inhibitors. With the approval of the soluble guanylate cyclase stimulator riociguat, an additional drug class has become available targeting a distinct molecular target in the same pathway as PDE5 inhibitors. Treatment recommendations currently include the use of all four drug classes to treat PAH, but there is a lack of comparative data for these therapies. Therefore, an understanding of the mechanistic differences between these agents is critical when making treatment decisions. Combination therapy is often used to treat PAH and it is therefore important that physicians understand how the modes of action of these drugs may interact to work as complementary partners, or potentially with unwanted consequences. Furthermore, different patient phenotypes mean that patients respond differently to treatment; while a certain monotherapy may be adequate for some patients, for others it will be important to consider alternating or combining compounds with different molecular targets. This review describes how the four currently approved drug classes target the complex pathobiology of PAH and will consider the distinct target molecules of each drug class, their modes of action, and review the pivotal clinical trial data supporting their use. It will also discuss the rationale for combining drugs (or not) from the different classes, and review the clinical data from studies on combination therapy.
Project description:Intracerebral haemorrhage (ICH) is the second most common type of stroke and a major cause of mortality and disability worldwide. Despite advances in surgical interventions and acute ICH management, there is currently no effective therapy to improve functional outcomes in patients. Recently, there has been tremendous progress uncovering new pathophysiological mechanisms underlying ICH that may pave the way for the development of therapeutic interventions. Here, we highlight emerging targets, but also existing gaps in preclinical animal modelling that prevent their exploitation. We particularly focus on (1) ICH aetiology, (2) the haematoma, (3) inflammation, and (4) post-ICH pathology. It is important to recognize that beyond neurons and the brain, other cell types and organs are crucially involved in ICH pathophysiology and successful interventions likely will need to address the entire organism. This review will spur the development of successful therapeutic interventions for ICH and advanced animal models that better reflect its aetiology and pathophysiology.