Unknown

Dataset Information

0

Foxtail mosaic virus-induced gene silencing (VIGS) in switchgrass (Panicum virgatum L.).


ABSTRACT:

Background

Although the genome for the allotetraploid bioenergy crop switchgrass (Panicum virgatum) has been established, limitations in mutant resources have hampered in planta gene function studies toward crop optimization. Virus-induced gene silencing (VIGS) is a versatile technique for transient genetic studies. Here we report the implementation of foxtail mosaic virus (FoMV)-mediated gene silencing in switchgrass in above- and below-ground tissues and at different developmental stages.

Results

The study demonstrated that leaf rub-inoculation is a suitable method for systemic gene silencing in switchgrass. For all three visual marker genes, Magnesium chelatase subunit D (ChlD) and I (ChlI) as well as phytoene desaturase (PDS), phenotypic changes were observed in leaves, albeit at different intensities. Gene silencing efficiency was verified by RT-PCR for all tested genes. Notably, systemic gene silencing was also observed in roots, although silencing efficiency was stronger in leaves (~ 63-94%) as compared to roots (~ 48-78%). Plants at a later developmental stage were moderately less amenable to VIGS than younger plants, but also less perturbed by the viral infection.

Conclusions

Using FoMV-mediated VIGS could be achieved in switchgrass leaves and roots, providing an alternative approach for studying gene functions and physiological traits in this important bioenergy crop.

SUBMITTER: Tiedge K 

PROVIDER: S-EPMC9150325 | biostudies-literature | 2022 May

REPOSITORIES: biostudies-literature

altmetric image

Publications

Foxtail mosaic virus-induced gene silencing (VIGS) in switchgrass (Panicum virgatum L.).

Tiedge Kira K   Destremps Janessa J   Solano-Sanchez Janet J   Arce-Rodriguez Magda Lisette ML   Zerbe Philipp P  

Plant methods 20220530 1


<h4>Background</h4>Although the genome for the allotetraploid bioenergy crop switchgrass (Panicum virgatum) has been established, limitations in mutant resources have hampered in planta gene function studies toward crop optimization. Virus-induced gene silencing (VIGS) is a versatile technique for transient genetic studies. Here we report the implementation of foxtail mosaic virus (FoMV)-mediated gene silencing in switchgrass in above- and below-ground tissues and at different developmental stag  ...[more]

Similar Datasets

| S-EPMC6587034 | biostudies-literature
| S-EPMC7317012 | biostudies-literature
| S-EPMC6381781 | biostudies-literature
| S-EPMC5341465 | biostudies-literature
| S-EPMC6123914 | biostudies-literature
| S-EPMC9325832 | biostudies-literature
| S-EPMC5787850 | biostudies-literature
| S-EPMC3851271 | biostudies-literature
| S-EPMC3161867 | biostudies-literature
| S-EPMC6931244 | biostudies-literature