Unknown

Dataset Information

0

Crystal structure and metal binding properties of the periplasmic iron component EfeM from Pseudomonas syringae EfeUOB/M iron-transport system.


ABSTRACT: EfeUOB/M has been characterised in Pseudomonas syringae pathovar. syringae as a novel type of ferrous-iron transporter, consisting of an inner-membrane protein (EfeUPsy) and three periplasmic proteins (EfeOPsy, EfeMPsy and EfeBPsy). The role of an iron permease and peroxidase function has been identified for the EfeU and EfeB proteins, respectively, but the role of EfeO/M remains unclear. EfeMPsy is an 'M75-only' EfeO-like protein with a C-terminal peptidase-M75 domain (EfeOII/EfeM family). Herein, we report the 1.6 Å resolution crystal structure of EfeMPsy, the first structural report for an EfeM component of P. syringae pv. syringae. The structure possesses the bi-lobate architecture found in other bacterial periplasmic substrate/solute binding proteins. Metal binding studies, using SRCD and ICP-OES, reveal a preference of EfeMPsy for copper, iron and zinc. This work provides detailed knowledge of the structural scaffold, the metal site geometry, and the divalent metal binding potential of EfeM. This work provides crucial underpinning for a more detailed understanding of the role of EfeM/EfeO proteins and the peptidase-M75 domains in EfeUOB/M iron uptake systems in bacteria.

SUBMITTER: Rajasekaran MB 

PROVIDER: S-EPMC9174327 | biostudies-literature | 2022 Jun

REPOSITORIES: biostudies-literature

altmetric image

Publications

Crystal structure and metal binding properties of the periplasmic iron component EfeM from Pseudomonas syringae EfeUOB/M iron-transport system.

Rajasekaran Mohan B MB   Hussain Rohanah R   Siligardi Giuliano G   Andrews Simon C SC   Watson Kimberly A KA  

Biometals : an international journal on the role of metal ions in biology, biochemistry, and medicine 20220329 3


EfeUOB/M has been characterised in Pseudomonas syringae pathovar. syringae as a novel type of ferrous-iron transporter, consisting of an inner-membrane protein (EfeU<sub>Psy</sub>) and three periplasmic proteins (EfeO<sub>Psy</sub>, EfeM<sub>Psy</sub> and EfeB<sub>Psy</sub>). The role of an iron permease and peroxidase function has been identified for the EfeU and EfeB proteins, respectively, but the role of EfeO/M remains unclear. EfeM<sub>Psy</sub> is an 'M75-only' EfeO-like protein with a C-t  ...[more]

Similar Datasets

| S-EPMC8561739 | biostudies-literature
| S-EPMC4535888 | biostudies-literature
| S-EPMC1828884 | biostudies-literature
| S-EPMC7927077 | biostudies-literature
| S-EPMC2630496 | biostudies-literature
| S-EPMC2222644 | biostudies-literature
| S-EPMC2888172 | biostudies-literature
| S-EPMC134957 | biostudies-literature
| S-EPMC7493233 | biostudies-literature
| S-EPMC3553754 | biostudies-literature