Correction for Chia et al., Identification of genetic risk loci and prioritization of genes and pathways for myasthenia gravis: a genome-wide association study.
Correction for Chia et al., Identification of genetic risk loci and prioritization of genes and pathways for myasthenia gravis: a genome-wide association study.
Proceedings of the National Academy of Sciences of the United States of America 20220603 23
Project description:Myasthenia gravis is a chronic autoimmune disease characterized by autoantibody-mediated interference of signal transmission across the neuromuscular junction. We performed a genome-wide association study (GWAS) involving 1,873 patients diagnosed with acetylcholine receptor antibody-positive myasthenia gravis and 36,370 healthy individuals to identify disease-associated genetic risk loci. Replication of the discovered loci was attempted in an independent cohort from the UK Biobank. We also performed a transcriptome-wide association study (TWAS) using expression data from skeletal muscle, whole blood, and tibial nerve to test the effects of disease-associated polymorphisms on gene expression. We discovered two signals in the genes encoding acetylcholine receptor subunits that are the most common antigenic target of the autoantibodies: a GWAS signal within the cholinergic receptor nicotinic alpha 1 subunit (CHRNA1) gene and a TWAS association with the cholinergic receptor nicotinic beta 1 subunit (CHRNB1) gene in normal skeletal muscle. Two other loci were discovered on 10p14 and 11q21, and the previous association signals at PTPN22, HLA-DQA1/HLA-B, and TNFRSF11A were confirmed. Subgroup analyses demonstrate that early- and late-onset cases have different genetic risk factors. Genetic correlation analysis confirmed a genetic link between myasthenia gravis and other autoimmune diseases, such as hypothyroidism, rheumatoid arthritis, multiple sclerosis, and type 1 diabetes. Finally, we applied Priority Index analysis to identify potentially druggable genes/proteins and pathways. This study provides insight into the genetic architecture underlying myasthenia gravis and demonstrates that genetic factors within the loci encoding acetylcholine receptor subunits contribute to its pathogenesis.
Project description:Myasthenia gravis (MG) is a rare autoantibody-mediated disease affecting the neuromuscular junction. We performed a genome-wide association study of 5708 MG cases and 432,028 controls of European ancestry and a replication study in 3989 cases and 226,643 controls provided by 23andMe Inc. We identified 12 independent genome-wide significant hits (P < 5e-8) across 11 loci. Subgroup analyses revealed two of these were associated with early-onset (at age <50) and four with late-onset MG (at age ≥ 50). Imputation of human leukocyte antigen alleles revealed inverse effect sizes for late- and early-onset, suggesting a potential modulatory influence on the time of disease manifestation. We assessed the performance of polygenic risk scores for MG, which significantly predicted disease status in an independent target cohort, explaining 4.21% of the phenotypic variation (P = 5.12e-9). With this work, we aim to enhance our understanding of the genetic architecture of MG.
Project description:ImportanceMyasthenia gravis is a chronic, autoimmune, neuromuscular disease characterized by fluctuating weakness of voluntary muscle groups. Although genetic factors are known to play a role in this neuroimmunological condition, the genetic etiology underlying myasthenia gravis is not well understood.ObjectiveTo identify genetic variants that alter susceptibility to myasthenia gravis, we performed a genome-wide association study.Design, setting, and participantsDNA was obtained from 1032 white individuals from North America diagnosed as having acetylcholine receptor antibody-positive myasthenia gravis and 1998 race/ethnicity-matched control individuals from January 2010 to January 2011. These samples were genotyped on Illumina OmniExpress single-nucleotide polymorphism arrays. An independent cohort of 423 Italian cases and 467 Italian control individuals were used for replication.Main outcomes and measuresWe calculated P values for association between 8,114,394 genotyped and imputed variants across the genome and risk for developing myasthenia gravis using logistic regression modeling. A threshold P value of 5.0×10(-8) was set for genome-wide significance after Bonferroni correction for multiple testing.ResultsIn the overall case-control cohort, we identified association signals at CTLA4 (rs231770; P=3.98×10(-8); odds ratio, 1.37; 95% CI, 1.25-1.49), HLA-DQA1 (rs9271871; P=1.08×10(-8); odds ratio, 2.31; 95% CI, 2.02-2.60), and TNFRSF11A (rs4263037; P=1.60×10(-9); odds ratio, 1.41; 95% CI, 1.29-1.53). These findings replicated for CTLA4 and HLA-DQA1 in an independent cohort of Italian cases and control individuals. Further analysis revealed distinct, but overlapping, disease-associated loci for early- and late-onset forms of myasthenia gravis. In the late-onset cases, we identified 2 association peaks: one was located in TNFRSF11A (rs4263037; P=1.32×10(-12); odds ratio, 1.56; 95% CI, 1.44-1.68) and the other was detected in the major histocompatibility complex on chromosome 6p21 (HLA-DQA1; rs9271871; P=7.02×10(-18); odds ratio, 4.27; 95% CI, 3.92-4.62). Association within the major histocompatibility complex region was also observed in early-onset cases (HLA-DQA1; rs601006; P=2.52×10(-11); odds ratio, 4.0; 95% CI, 3.57-4.43), although the set of single-nucleotide polymorphisms was different from that implicated among late-onset cases.Conclusions and relevanceOur genetic data provide insights into aberrant cellular mechanisms responsible for this prototypical autoimmune disorder. They also suggest that clinical trials of immunomodulatory drugs related to CTLA4 and that are already Food and Drug Administration approved as therapies for other autoimmune diseases could be considered for patients with refractory disease.
Project description:Background Myasthenia gravis (MG) is an autoimmune disorder with fluctuating muscle weakness, divided into generalized and localized (ocular) forms. Maternal antibodies to acetylcholine receptors cross the placenta and may cause transient neonatal myasthenia gravis (TNMG). We present a case of seronegative maternal ocular MG and delayed TNMG. Case A 29-year-old G3P1011 underwent cesarean birth of a male infant who developed oxygen desaturation requiring supplemental oxygen on day of life (DOL) 3. Based on the clinical course and after exclusion of other diagnoses, the infant was diagnosed with TNMG. Infant's condition improved spontaneously and he was weaned off supplemental oxygen and discharged home on DOL 12. Conclusion Infants born to mothers with seronegative localized (ocular) MG are also susceptible to TNMG which may be late in onset.
Project description:Acquired Myasthenia Gravis (MG) is a neuromuscular disease caused by autoantibodies against components of the neuromuscular junction. It is a prototype organ-specific autoimmune disease with well-defined antigenic targets mainly the nicotinic acetylcholine receptor (AChR). Patients suffer from fluctuating, fatigable muscle weakness that worsens with activity and improves with rest.Various therapeutic strategies have been used over the years to alleviate MG symptoms. These strategies aim at improving the transmission of the nerve impulse to muscle or at lowering the immune system with steroids or immunosuppressant drugs. Nevertheless, MG remains a chronic disease and symptoms tend to persist in many patients, some being or becoming refractory over time. In this review, based on recent experimental data on MG or based on results from clinical trials for other autoimmune diseases, we explore new potential therapeutic approaches for MG patients, going from non-specific approaches with the use of stem cells with their anti-inflammatory and immunosuppressive properties to targeted therapies using monoclonal antibodies specific for cell-surface antigens or circulating molecules.
Project description:Myasthenia gravis (MG) is an autoimmune disease affecting the neuromuscular junction, whose clinical hallmark is muscle weakness and early fatigability. Azathioprine (AZA) is commonly used in Myasthenia Gravis therapy. AZA is a purine antagonist, which inhibits the cell cycle in the resting and DNA synthesis phases. It is usually used as an immunosuppressant to block T- and B-cell proliferation. AZA, bioconverted to 6-mercaptopurine by glutathione S-transferase (GST), can be metabolized either through the hypoxanthine phosphoribosyl transferase pathway to active 6-thioguanine nucleotides (6-TGN) or through the thiopurine S-methyltransferase (TPMT) pathway to inactive methyl-thiopurine metabolites. The incorporation of active 6-TGNs into DNA, causing breaks in DNA strands resulting in interference with RNA production and thereby protein synthesis, is responsible for the drug effect. The response to AZA is determined by which metabolic pathway is being favored. While balanced use of both HPRT and TPMT pathways results in responsiveness to AZA, hyperactivity of TPMT skews the balance towards the TPMT pathway and results in unresponsiveness to AZA with no pharmacological effect. In contrast, low TPMT activity skews the balance towards the HPRT pathway, resulting in increasing side-effects due to the accumulation of 6-TGNs. Current treatments for MG therapy are often inadequate because less than 40% of patients achieve complete remission with available drugs. This reflects the lack of drugs acting on target sites for which there is strong evidence of pathogenicity and the inability to identify responder patients. No criteria for responsiveness are available, exposing patients to unpredictable failures and unpredictable side effects. These individuals are at particular risk for adverse drug reaction (ADRs) or therapeutic failure. Genetic profiling with the Affymetrix drug metabolizing enzymes and transports genotyping array offers the ability to determine 1,931 variants and 225 genes involved in drug metabolism and disposition. Accordingly, the study of well-known drug-metabolizing genes can be involved in the specific metabolic pathway of a drug, which is more likely to define genotype-phenotype association and thereby genotype profiles relevant to drug response that can be applied as predictive biomarkers for pharmacological treatment.
Project description:IntroductionLabor-market participation is potentially very difficult for patients with refractory myasthenia gravis (MG). In this study, employment status and work absences are compared between refractory and nonrefractory MG.MethodsAdults (aged 18-64 years, all diagnosed ≥2 years previously) were included if enrolled in the Myasthenia Gravis Foundation of America Patient Registry during July 2013 to February 2018.ResultsSeventy-six patients (9.2%) had refractory and 749 (90.8%) had nonrefractory disease; demographic data did not differ between groups. Relative to the nonrefractory group, the refractory group patients were more than twice as likely to work fewer hours per week (odds ratio [95% confidence interval]: currently employed, 2.777 [1.640-4.704]; employed over previous 6 months, 2.643 [1.595-4.380]), but those employed were not more likely to be absent from work.DiscussionBecause absence from the labor market adversely affects quality of life and personal finances, these findings reaffirm the considerable disease burden associated with refractory MG.
Project description:The project was focused on the serum proteomic profiling of the neuromuscular autoimmune disease, Myasthenia gravis (MG). The project aimed to identify candidate serum proteins to understand the disease better. To eliminate any typical autoimmune response Rheumatoid arthritis (RA) was included as a reference disease to the sample group.