Project description:Methane steam reforming (MSR) plays a key role in the production of syngas and hydrogen from natural gas. The increasing interest in the use of hydrogen for fuel cell applications demands development of catalysts with high activity at reduced operating temperatures. Ni-based catalysts are promising systems because of their high activity and low cost, but coke formation generally poses a severe problem. Studies of ambient-pressure X-ray photoelectron spectroscopy (AP-XPS) indicate that CH4/H2O gas mixtures react with Ni/CeO2(111) surfaces to form OH, CH x , and CH x O at 300 K. All of these species are easy to form and desorb at temperatures below 700 K when the rate of the MSR process is accelerated. Density functional theory (DFT) modeling of the reaction over ceria-supported small Ni nanoparticles predicts relatively low activation barriers between 0.3 and 0.7 eV for complete dehydrogenation of methane to carbon and the barrierless activation of water at interfacial Ni sites. Hydroxyls resulting from water activation allow for CO formation via a COH intermediate with a barrier of about 0.9 eV, which is much lower than that through a pathway involving lattice oxygen from ceria. Neither methane nor water activation is a rate-determining step, and the OH-assisted CO formation through the COH intermediate constitutes a low-barrier pathway that prevents carbon accumulation. The interactions between Ni and the ceria support and the low metal loading are crucial for the reaction to proceed in a coke-free and efficient way. These results pave the way for further advances in the design of stable and highly active Ni-based catalysts for hydrogen production.
Project description:Steam reforming is a potential technology for the conversion of biomass pyrolysis tar into gaseous products. In this study, HZSM-5 was selected as the nickel-based catalyst support and toluene was chosen as the tar model compound. Ni was replaced with MgO to improve the coking resistance of the catalyst. The effects of Ni and MgO loading on toluene conversion and gaseous product generation rate were investigated. The low Ni-loading Ni/HZSM-5 catalyst exhibited poor catalytic activity, whereas a high Ni-loading catalyst displayed poor coking resistance. The addition of the MgO promoter enhanced the steam reforming performance of the Ni/HZSM-5 catalyst with a low loading of active metal Ni (3 wt%). The optimal MgO loading was found at 6 wt%. By characterizing the catalyst before and after the reaction, we found that MgO would enter the wall and pores of the support, resulting in increased pore size and decreased specific surface area. Ni and MgO were combined to form NiO-MgO solid solution active centers, which enhanced the catalytic reforming performance. Moreover, more MgO loading increased the alkaline strength of the catalytic surface, enhanced the adsorption of CO2, and improved the resistance to carbon deposition. This study revealed the feasibility of replacing Ni with MgO and the potential mechanism of maintaining similar catalytic performance. This study also laid the theoretical foundation for the industrial application of nickel-based catalysts.
Project description:This research developed hierarchical 10 wt % Ni-1 wt % ZrO2/Al2O3 catalysts for combined steam and CO2 reforming of methane (CSCRM) reaction to produce syngas for gas-to-liquid (GTL) application under the ultralow temperature and low steam condition. The hierarchical nanosheet catalysts were prepared via a novel impregnation technique assisted by ammonia vapor diffusion with various times (1, 6, and 12 h) to develop the different magnitude of hierarchical nanosheets on the surface. Then, CSCRM at 600 °C was performed on the catalysts for 6 h. The results evidenced the improvement of H2 selectivity, reaching an appropriate H2/CO ratio (1.9-2.0) in FT subunits in the GTL process when nanosheets existed on the surface due to the increase in H2O adsorption-dissociation sites. The good dispersion of hierarchical nanosheets accompanied by the ZrO2 promoter successfully enhanced the CH4 conversion and the coke prevention through the spread nanosheets because of the increase in the number of active sites and the surface interaction. The interaction of hierarchical nanosheets created the H2O activation-dissociation sites that allowed CO2 to be selective on the oxygen vacancy sites, producing more OH* and OH* on the catalyst surface to resist the carbon deposition during CSCRM operation.
Project description:A highly active and stable nano structured Pt/Mg1-xNixO catalysts was developed by a simple co-precipitation method. The obtained Pt/Mg1-xNixO catalyst exhibited cubic structure nanocatalyst with a size of 50-80 nm and realized CH4 and CO2 conversions as high as 98% at 900°C with excellent stability in the dry reforming of methane. The characterization of catalyst was performed using various kinds of analytical techniques including XRD, BET, XRF, TPR-H2, TGA, TEM, FESEM, FT-IR, and XPS analyses. Characterization of spent catalyst further confirms that Pt/Mg1-xNixO catalyst has high coke-resistance for dry reforming. Thus, the catalyst demonstrated in this study, offers a promising catalyst for resolving the dilemma between dispersion and reducibility of supported metal, as well as activity and stability during high temperature reactions.
Project description:The metal-support interaction (MSI) in heterogeneous catalysts plays a crucial role in reforming reaction to produce renewable hydrogen, but conventional objects are limited to single metal and support. Herein, we report a type of RhNi/TiO2 catalysts with tunable RhNi-TiO2 strong bimetal-support interaction (SBMSI) derived from structure topological transformation of RhNiTi-layered double hydroxides (RhNiTi-LDHs) precursors. The resulting 0.5RhNi/TiO2 catalyst (with 0.5 wt.% Rh) exhibits extraordinary catalytic performance toward ethanol steam reforming (ESR) reaction with a H2 yield of 61.7%, a H2 production rate of 12.2 L h-1 gcat-1 and a high operational stability (300 h), which is preponderant to the state-of-the-art catalysts. By virtue of synergistic catalysis of multifunctional interface structure (Rh-Niδ--Ov-Ti3+; Ov denotes oxygen vacancy), the generation of formate intermediate (the rate-determining step in ESR reaction) from steam reforming of CO and CHx is significantly promoted on 0.5RhNi/TiO2 catalyst, accounting for its ultra-high H2 production.
Project description:Low temperature (<500 K) methane steam reforming in an electric field was investigated over various catalysts. To elucidate the factors governing catalytic activity, activity tests and various characterization methods were conducted over various oxides including CeO2, Nb2O5, and Ta2O5 as supports. Activities of Pd catalysts loaded on these oxides showed the order of CeO2 > Nb2O5 > Ta2O5. Surface proton conductivity has a key role for the activation of methane in an electric field. Proton hopping ability on the oxide surface was estimated using electrochemical impedance measurements. Proton transport ability on the oxide surface at 473 K was in the order of CeO2 > Nb2O5 > Ta2O5. The OH group amounts on the oxide surface were evaluated by measuring pyridine adsorption with and without H2O pretreatment. Results indicate that the surface OH group concentrations on the oxide surface were in the order of CeO2 > Nb2O5 > Ta2O5. These results demonstrate that the surface concentrations of OH groups are related to the proton hopping ability on the oxide surface. The concentrations reflect the catalytic activity of low-temperature methane steam reforming in the electric field.
Project description:Summary Dry reforming of methane (DRM) is an efficient process to transform methane and carbon dioxide to syngas. Nickel could show good catalytic activity for DRM, whereas the deactivation of nickel surfaces by the formation of inert carbon structures is inevitable. In this study, we carry out a detailed investigation of the evolution and catalytic performance of the carbon-covered surface structure on Ni(100) with a combined density functional theory and microkinetic modeling approach. The results suggest that the pristine Ni(100) surface is prone to carbon deposition and accumulation under reaction conditions. Further studies show that over this carbon-covered reconstructed Ni(100) surface, a carbon-based Mars-van-Krevelen mechanism would be favored, and the activity and coke resistance is promoted. This surface state and reaction mechanism were rarely reported before and would provide more insights into the DRM process under real reaction conditions and would help design more stable Ni catalysts. Graphical abstract Highlights • Pristine Ni(100) surface is prone to carbon deposition under reaction conditions• Carbon coverage of 0.5 monolayer is a threshold for surface deformation• A carbon-based MvK mechanism is favored over the carbon-covered Ni(100)• Activity and coke resistance are promoted over the carbon-covered surface Chemistry; Theoretical organic chemistry
Project description:In the present study, Ni/Ce-Sm-xCu (x = 5, 7, 10 at.%) catalysts were prepared using microwave radiation coupled with sol-gel and followed by wetness impregnation method for the Ni incorporation. Highly dispersed nanocrystallites of CuO and NiO on the Ce-Sm-Cu support were found. Increase of Cu content seems to facilitate the reducibility of the catalyst according to the H₂ temperature-programmed reduction (H₂-TPR). All the catalysts had a variety of weak, medium and strong acid/basic sites that regulate the reaction products. All the catalysts had very high XC3H8O3 for the entire temperature (400⁻750 °C) range; from ≈84% at 400 °C to ≈94% at 750 °C. Ni/Ce-Sm-10Cu catalyst showed the lowest XC3H8O3-gas implying the Cu content has a detrimental effect on performance, especially between 450⁻650 °C. In terms of H₂ selectivity (SH2) and H₂ yield (YH2), both appeared to vary in the following order: Ni/Ce-Sm-10Cu > Ni/Ce-Sm-7Cu > Ni/Ce-Sm-5Cu, demonstrating the high impact of Cu content. Following stability tests, all the catalysts accumulated high amounts of carbon, following the order Ni/Ce-Sm-5Cu < Ni/Ce-Sm-7Cu < Ni/Ce-Sm-10Cu (52, 65 and 79 wt.%, respectively) based on the thermogravimetric analysis (TGA) studies. Raman studies showed that the incorporation of Cu in the support matrix controls the extent of carbon graphitization deposited during the reaction at hand.
Project description:This study investigates the influence of the phosphorus-to-nickel (P:Ni) ratio on methanol steam reforming (MSR) over nickel phosphide catalysts using density functional theory (DFT) calculations. The catalytic behavior of Ni(111) and Ni12P5(001) surfaces was explored and contrasted to our previous results from research on Ni2P(001). The DFT-predicted barriers reveal that Ni(111) predominantly favors the methanol decomposition route, where methanol is converted into carbon monoxide through a stepwise pathway involving CH3OH* → CH3O* → CH2O* → CHO* → CO*. On the other hand, Ni12P5 with a P:Ni atomic ratio of 0.42 (5:12) exhibits a substantial increase in selectivity towards methanol steam reforming (MSR) relative to methanol decomposition. In this pathway, formaldehyde is transformed into CO2 through a sequence of reactions involving CH2O*→ H2COOH* → HCOOH* → HCOO* → CO2. The introduction of phosphorus into the catalyst alters the surface morphology and electronic structure, favoring the MSR pathway. However, with a further increase in the P:Ni atomic ratio to 0.5 (1:2) on Ni2P catalysts, the selectivity towards MSR decreases, resulting in a more balanced competition between methanol decomposition and MSR. These results highlight the significance of tuning the P:Ni atomic ratio in designing efficient catalysts for the selective production of CO2 through the MSR route, offering valuable insights into optimizing nickel phosphide catalysts for desired chemical transformations.
Project description:In this work; a response surface methodology (RSM) was implemented to investigate the process variables in a hydrogen production system. The effects of five independent variables; namely the temperature (X₁); the flow rate (X₂); the catalyst weight (X₃); the catalyst loading (X₄) and the glycerol-water molar ratio (X₅) on the H₂ yield (Y₁) and the conversion of glycerol to gaseous products (Y₂) were explored. Using multiple regression analysis; the experimental results of the H₂ yield and the glycerol conversion to gases were fit to quadratic polynomial models. The proposed mathematical models have correlated the dependent factors well within the limits that were being examined. The best values of the process variables were a temperature of approximately 600 °C; a feed flow rate of 0.05 mL/min; a catalyst weight of 0.2 g; a catalyst loading of 20% and a glycerol-water molar ratio of approximately 12; where the H₂ yield was predicted to be 57.6% and the conversion of glycerol was predicted to be 75%. To validate the proposed models; statistical analysis using a two-sample t-test was performed; and the results showed that the models could predict the responses satisfactorily within the limits of the variables that were studied.