Project description:Amphiphilic block polypeptides can self-assemble into a range of nanostructures in solution, including micelles and vesicles. Our group has recently described the capacity of recombinant amphiphilic diblock copolypeptides to form highly stable micelles. In this report, we demonstrate the utility of protein nanoparticles to serve as a vehicle for controlled drug delivery. Drug-loaded micelles were produced by encapsulating dipyridamole as a model hydrophobic drug with anti-inflammatory activity. Murine studies confirmed the capacity of drug-loaded protein micelles to limit the in vivo recruitment of neutrophils in response to an inflammatory stimulus.
Project description:Redox-and pH-sensitive branched star polymers (BSPs), BP(DMAEMA-co-MAEBA-co-DTDMA)(PMAIGP)(n)s, have been successively prepared by two steps of reversible addition-fragmentation chain transfer (RAFT) polymerization. The first step is RAFT polymerization of 2-(N,N-dimethylaminoethyl)methacrylate (DMAEMA) and p-(methacryloxyethoxy) benzaldehyde (MAEBA) in the presence of divinyl monomer, 2,2'-dithiodiethoxyl dimethacrylate (DTDMA). The resultant branched polymers were used as a macro-RAFT agent in the subsequent RAFT polymerization. After hydrolysis of the BSPs to form BP(DMAEMA-co-MAEBA-co-DTDMA)(PMAGP)(n)s (BSP-H), the anticancer drug doxorubicin (DOX) was covalently linked to branched polymer chains by reaction of primary amine of DOX and aldehyde groups in the polymer chains. Their compositions, structures, molecular weights, and molecular weight distributions were respectively characterized by nuclear magnetic resonance spectra and gel permeation chromatography measurements. The DOX-loaded micelles were fabricated by self-assembly of DOX-containing BSPs in water, which were characterized by transmission electron microscopy and dynamic light scattering. Aromatic imine linkage is stable in neutral water, but is acid-labile; controlled release of DOX from the BSP-H-DOX micelles was realized at pH values of 5 and 6, and at higher acidic solution, fast release of DOX was observed. In vitro cytotoxicity experiment results revealed low cytotoxicity of the BSPs and release of DOX from micelles in HepG2 and HeLa cells. Confocal laser fluorescence microscopy observations showed that DOX-loaded micelles have specific interaction with HepG2 cells. Thus, this type of BSP micelle is an efficient drug delivery system.
Project description:Amphiphilic micelles based on chitosan (CS) were applied as drug carriers of aceclofenac (ACF) as a potential method to induce its bioavailability and therapeutic efficiency. N-octyl-N,O-succinyl CS (OSCS), an amphiphilic CS derivative, was successfully synthesized and loaded physically by ACF at different pH values and using different dosages of ACF, forming ACF-loaded polymeric micelles (PMs). The obtained PMs and ACF-loaded PMs were characterized by different analytical techniques, including AFM, TEM, DLS, UV-vis spectrophotometry, 1H NMR spectroscopy, and FT-IR spectroscopy. The pH 5 sample with a 30% ACF/polymer ratio showed the highest ACF loading capacity (LC) and entrapment efficiency (EE). In vitro release behaviors of pure ACF and ACF-loaded PMs at each release point indicated that the release profile of pH-responsive PMs loaded with ACF demonstrated quicker release rates (94% after 480 min) compared to the release behavior noticed for free ACF (59.56% after 480 min). Furthermore, the release rates exhibit a notable rise when the pH is increased from 1.2 to 4.7. In the carrageenan-induced inflammation model of paw edema in rats, it has been demonstrated that the injection of ACF-loaded PMs (at a dose of 10 mg/kg) resulted in a strengthened inflammatory activity compared to the injection of free ACF at equivalent dosages as well as at time intervals. However, the use of ACF-loaded PMs for a duration of 6 h displayed a notable reduction of paw edema, with an inhibition percentage of 85.09%, in contrast to the 74.9% inhibition percentage observed for the free ACF medication.
Project description:Diffusion controls local concentration profiles at interfaces between segregated fluid elements during mixing processes. This is important for antisolvent crystallization, where it is intuitively argued that local concentration profiles at interfaces between solution and antisolvent fluid elements can result in significant supersaturation overshoots over and above that at the final mixture composition, leading to poorly controlled nucleation. Previous work on modeling diffusive mixing in antisolvent crystallization has relied on Fickian diffusion, where concentration gradients are the driving force for diffusion. This predicts large overshoots in the supersaturation at interfaces between solution and antisolvent, as is often intuitively expected. However, chemical potential gradients provide a more physically realistic driving force for diffusion, and in highly nonideal solutions, such as those in antisolvent crystallization, this leads to nonintuitive behavior. In particular, as solute diffusion toward antisolvent is severely hindered, it can diffuse against its concentration gradient away from antisolvent. We apply thermodynamically consistent diffusion model based on the multicomponent Maxwell-Stefan formulation to examine diffusive mixing in a nonideal antisolvent crystallization system. Large supersaturation overshoots above that at the final mixture composition are not found when a thermodynamically consistent approach is used, demonstrating that these overshoots are modeling artifacts and are not expected to be present in physical systems. In addition, for certain conditions, localized liquid-liquid spinodal demixing is predicted to occur during the diffusive mixing process, even when the final mixture composition is outside the liquid-liquid phase separation region. Intermittent spinodal demixing driven by diffusive mixing may provide a novel explanation for differences of nucleation behaviors among various antisolvents.
Project description:The impact of single or combinations of additives on the generation of nanosuspensions of two poorly water-soluble active pharmaceutical ingredients (APIs), fenofibrate (FF) and dalcetrapib (DCP), and their isolation to the dry state via antisolvent (AS) crystallization followed by freeze-drying was explored in this work. Combinations of polymeric and surfactant additives such as poly(vinyl alcohol) or hydroxypropyl methyl cellulose and sodium docusate were required to stabilize nanoparticles (∼200-300 nm) of both APIs in suspension before isolation to dryness. For both FF and DCP, multiple additives generated the narrowest, most-stable particle size distribution, with the smallest particles in suspension, compared with using a single additive. An industrially recognized freeze-drying process was used for the isolation of these nanoparticles to dryness. When processed by the liquid AS crystallization followed by freeze-drying in the presence of multiple additives, a purer monomorphic powder for FF resulted than when processed in the absence of any additive or in the presence of a single additive. It was noted that all nanoparticles freeze-dried in the presence of additives had a flat, flaky habit resulting in large surface areas. Agglomeration occurred during freeze-drying, resulting in micron-size particles. However, after freeze-drying, powders produced with single or multiple additives showed similar dissolution profiles, irrespective of aging time before drying, thus attenuating the advantage of multiple additives in terms of size observed before the freeze-drying process.
Project description:It is of great significance to study the structure property and self-assembly of amphiphilic block copolymer in order to effectively and efficiently design and prepare drug delivery systems. In this work, dissipative particle dynamics (DPD) simulation method was used to investigate the structure property and self-assembly ability of pH-responsive amphiphilic block copolymer poly(methyl methacrylate-co-methacrylic acid)-b-poly(aminoethyl methacrylate) (poly(MMA-co-MAA)-b-PAEMA). The effects of different block ratios (hydrophilic PAEMA segment and pH-sensitive PMAA segment) in copolymer on self-assembly and drug loading capacity including drug distribution were extensively investigated. The increase of hydrophilic PAEMA facilitated the formation of a typical core-shell structure as well as a hydrophobic PMAA segment. Furthermore, the optimal drug-carrier ratio was confirmed by an analysis of the drug distribution during the self-assembly process of block copolymer and model drug Ibuprofen (IBU). In addition, the drug distribution and nanostructure of IBU-loaded polymeric micelles (PMs) self-assembled from precise block copolymer (PMMA-b-PMAA-b-PAEMA) and block copolymer (poly(MMA-co-MAA)-b-PAEMA) with random pH-responsive/hydrophobic structure were evaluated, showing that almost all drug molecules were encapsulated into a core for a random copolymer compared to the analogue. The nanostructures of IBU-loaded PMs at different pH values were evaluated. The results displayed that the nanostructure was stable at pH < pKa and anomalous at pH > pKa which indicated drug release, suggesting that the PMs could be used in oral drug delivery. These findings proved that the amphiphilic block copolymer P(MMA30-co-MAA33)-b-PAEMA38 with random structure and pH-sensitivity might be a potential drug carrier. Moreover, DPD simulation shows potential to study the structure property of PMs self-assembled from amphiphilic block copolymer.
Project description:A large group of functional nanomaterials employed in biomedical applications, including targeted drug delivery, relies on amphiphilic polymers to encapsulate therapeutic payloads via self-assembly processes. Knowledge of the micelle structures will provide critical insights into design of polymeric drug delivery systems. Core-shell micelles composed of linear diblock copolymers poly(ethylene glycol)-b-poly(caprolactone) (PEG-b-PCL), poly(ethylene oxide)-b-poly(lactic acid) (PEG-b-PLA), as well as a heterografted brush consisting of a poly(glycidyl methacrylate) backbone with PEG and PLA branches (PGMA-g-PEG/PLA) were characterized by dynamic light scattering (DLS) and small angle X-ray scattering (SAXS) measurements to gain structural information regarding the particle morphology, core-shell size, and aggregation number. The structural information at this quasi-equilibrium state can also be used as a reference when studying the kinetics of polymer micellization.
Project description:We report the aqueous solution self-assembly of a series of poly(N-isopropylacrylamide) (PNIPAM) polymers end-functionalized with a hydrophobic sulfur-carbon-sulfur (SCS) pincer ligand. Although the hydrophobic ligand accounted for <5 wt% of the overall homopolymer mass, the polymers self-assembled into well-defined spherical micelles in aqueous solution, and these micelles are potential precursors to solution-assembled nanoreactors for small molecule catalysis applications. The micelle structural details were investigated using light scattering, cryogenic transmission electron microscopy (cryo-TEM), and small angle neutron scattering (SANS). Radial density profiles extracted from the cryo-TEM micrographs suggested that the PNIPAM chains formed a diffuse corona with a radially decreasing corona density profile and provided valuable a priori information about the micelle structure for SANS data modeling. SANS analysis indicated a similar profile in which the corona surrounded a small hydrophobic core containing the pincer ligand. The similarity between the SANS and cryo-TEM results demonstrated that detailed information about the micelle density profile can be obtained directly from cryo-TEM and highlighted the complementary use of scattering and cryo-TEM in the structural characterization of solution-assemblies, such as the SCS pincer-functionalized homopolymers described here.
Project description:Bottom-up synthetic biology aims to integrate artificial moieties with living cells and tissues. Here, two types of structural scaffolds for artificial organelles were compared in terms of their ability to interact with macrophage-like murine RAW 264.7 cells. The amphiphilic block copolymer poly(cholesteryl methacrylate)-block-poly(2-carboxyethyl acrylate) was used to assemble micelles and polymer-lipid hybrid vesicles together with 1,2-dioleoyl-sn-glycero-3-phosphocholine or 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE) lipids in the latter case. In addition, the pH-sensitive fusogenic peptide GALA was conjugated to the carriers to improve their lysosomal escape ability. All assemblies had low short-term toxicity toward macrophage-like murine RAW 264.7 cells, and the cells internalized both the micelles and hybrid vesicles within 24 h. Assemblies containing DOPE lipids or GALA in their building blocks could escape the lysosomes. However, the intracellular retention of the building blocks was only a few hours in all the cases. Taken together, the provided comparison between two types of potential scaffolds for artificial organelles lays out the fundamental understanding required to advance soft material-based assemblies as intracellular nanoreactors.
Project description:BACKGROUND:During the past few decades, drug delivery system (DDS) has attracted many interests because it could enhance the therapeutic effects of drugs and reduce their side effects. The advent of nanotechnology has promoted the development of nanosized DDSs, which could promote drug cellular uptake as well as prolong the half-life in blood circulation. Novel polymer micelles formed by self-assembly of amphiphilic polymers in aqueous solution have emerged as meaningful nanosystems for controlled drug release due to the reversible destabilization of hydrophobic domains under different conditions. RESULTS:The amphiphilic polymers presented here were composed of cholesterol groups end capped and poly (poly (ethylene glycol) methyl ether methacrylate) (poly (OEGMA)) as tailed segments by the synthesis of cholesterol-based initiator, followed by atom transfer radical polymerization (ATRP) with OEGMA monomer. FT-IR and NMR confirmed the successfully synthesis of products including initiator and polymers as well as the Mw of the polymers were from 33,233 to 89,088 g/mol and their corresponding PDI were from 1.25 to 1.55 by GPC. The average diameter of assembled polymer micelles was in hundreds nanometers demonstrated by DLS, AFM and SEM. The behavior of the amphiphilic polymers as micelles was investigated using pyrene probing to explore their critical micelle concentration (CMC) ranging from 2.53 × 10-4 to 4.33 × 10-4 mg/ml, decided by the balance between cholesterol and poly (OEGMA). Besides, the CMC of amphiphilic polymers, the quercetin (QC) feeding ratio and polarity of solvents determined the QC loading ratio maximized reaching 29.2% certified by UV spectrum, together with the corresponding size and stability changes by DLS and Zeta potential, and thermodynamic changes by TGA and DSC. More significantly, cholesterol end-capped polymer micelles were used as nanosized systems for controlled drug release, not only alleviated the cytotoxicity of QC from 8.6 to 49.9% live cells and also achieved the QC release in control under different conditions, such as the presence of cyclodextrin (CD) and change of pH in aqueous solution. CONCLUSIONS:The results observed in this study offered a strong foundation for the design of favorable polymer micelles as nanosized systems for controlled drug release, and the molecular weight adjustable amphiphilic polymer micelles held potential for use as controlled drug release system in practical application.