Project description:The human coronavirus disease-2019 (COVID-19) caused by SARS-CoV-2 is now a global pandemic. Personal hygiene such as hand-washing, the use of personal protective equipment, and social distancing via local and national lockdowns are used to reduce the risk of transmission of SARS-CoV-2. COVID-19 and the associated lockdowns may have significant impacts on environmental quality and ergonomics. However, limited studies exists on the impacts of COVID-19 and the associated lockdowns on environmental quality and ergonomics in low-income settings. Therefore, the present study investigated the impacts of the COVID-19 outbreak on socioeconomics, ergonomics and environment (water quality, air quality and noise) in Uttarakhand, India. Approximately 55% of respondents experienced headaches, and the other common health-related issue was back pain, with 45% of respondents having problems with their backs. Water and air quality significantly improved during the lockdown relative to the pre-lockdown period, but was observed to return to their previous characteristics afterwards. Lockdowns significant increased the concentration of indoor air pollutants while noise pollution levels significantly declined. In summary, lockdowns have adverse impacts on ergonomics, resulting in work-related human health risks. The impacts of lockdowns on environmental quality are mixed: temporary improvements on water and air quality, and noise reduction were observed, but indoor air quality deteriorated. Therefore, during lockdowns there is a need to minimize the adverse environmental and ergonomic impacts of lockdowns while simultaneously enhancing the beneficial impacts.
Project description:Coronavirus disease 2019 (COVID-19) infection is associated with risk of persistent neurocognitive and neuropsychiatric complications. It is unclear whether the neuropsychological manifestations of COVID-19 present as a uniform syndrome or as distinct neurophenotypes with differing risk factors and recovery outcomes. We examined post-acute neuropsychological profiles following SARS-CoV-2 infection in 205 patients recruited from inpatient and outpatient populations, using an unsupervised machine learning cluster analysis, with objective and subjective measures as input features. This resulted in three distinct post-COVID clusters. In the largest cluster (69%), cognitive functions were within normal limits, although mild subjective attention and memory complaints were reported. Vaccination was associated with membership in this "normal cognition" phenotype. Cognitive impairment was present in the remaining 31% of the sample but clustered into two differentially impaired groups. In 16% of participants, memory deficits, slowed processing speed, and fatigue were predominant. Risk factors for membership in the "memory-speed impaired" neurophenotype included anosmia and more severe COVID-19 infection. In the remaining 15% of participants, executive dysfunction was predominant. Risk factors for membership in this milder "dysexecutive" neurophenotype included disease-nonspecific factors such as neighborhood deprivation and obesity. Recovery outcomes at 6-month follow-up differed across neurophenotypes, with the normal cognition group showing improvement in verbal memory and psychomotor speed, the dysexecutive group showing improvement in cognitive flexibility, and the memory-speed impaired group showing no objective improvement and relatively worse functional outcomes compared to the other two clusters. These results indicate that there are multiple post-acute neurophenotypes of COVID-19, with different etiological pathways and recovery outcomes. This information may inform phenotype-specific approaches to treatment.
Project description:BackgroundCOVID-19 frequently presents with acute gastrointestinal (GI) symptoms, but it is unclear how common these symptoms are after recovery. The purpose of this study was to estimate the prevalence and characteristics of GI symptoms after COVID-19.MethodsThe medical records of patients hospitalized with COVID-19 between March 1 and June 30, 2020, were reviewed for the presence of GI symptoms at primary care follow-up 1 to 6 months later. The prevalence of new GI symptoms was estimated, and risk factors were assessed. Additionally, an anonymous survey was used to determine the prevalence of new GI symptoms among online support groups for COVID-19 survivors.Key resultsAmong 147 patients without pre-existing GI conditions, the most common GI symptoms at the time of hospitalization for COVID-19 were diarrhea (23%), nausea/vomiting (21%), and abdominal pain (6.1%), and at a median follow-up time of 106 days, the most common GI symptoms were abdominal pain (7.5%), constipation (6.8%), diarrhea (4.1%), and vomiting (4.1%), with 16% reporting at least one GI symptom at follow-up (95% confidence interval 11 to 23%). Among 285 respondents to an online survey for self-identified COVID-19 survivors without pre-existing GI symptoms, 113 (40%) reported new GI symptoms after COVID-19 (95% CI 33.9 to 45.6%).Conclusion and inferencesAt a median of 106 days after discharge following hospitalization for COVID-19, 16% of unselected patients reported new GI symptoms at follow-up. 40% of patients from COVID survivor groups reported new GI symptoms. The ongoing GI effects of COVID-19 after recovery require further study.
Project description:Individuals infected with the SARS-CoV-2 virus present with a wide variety of phenotypes ranging from asymptomatic to severe and even lethal outcomes. Past research has revealed a genetic haplotype on chromosome 3 that entered the human population via introgression from Neanderthals as the strongest genetic risk factor for the severe COVID-19 phenotype. However, the specific variants along this introgressed haplotype that contribute to this risk and the biological mechanisms that are involved remain unclear. Here, we assess the variants present on the risk haplotype for their likelihood of driving the severe COVID-19 phenotype. We do this by first exploring their impact on the regulation of genes involved in COVID-19 infection using a variety of population genetics and functional genomics tools. We then perform an locus-specific massively parallel reporter assay to individually assess the regulatory potential of each allele on the haplotype in a multipotent immune-related cell line. We ultimately reduce the set of over 600 linked genetic variants to identify 4 introgressed alleles that are strong functional candidates for driving the association between this locus and the severe COVID-19. These variants likely drive the locus’ impact on severity by putatively modulating the regulation of two critical chemokine receptor genes: CCR1 and CCR5. These alleles are ideal targets for future functional investigations into the interaction between host genomics and COVID-19 outcomes.
Project description:In this study we profiled 288 new serum proteomics samples measured at admission from patients hospitalized within the Mount Sinai Health System with positive SARS-CoV-2 infection. We first computed Th1 and Th2 pathway enrichment scores by gene set variation analysis and then compared the differences in Th2 and Th1 pathway scores between patients that died compared to those that survived.