Unknown

Dataset Information

0

Design, Synthesis and Structural Analysis of Glucocerebrosidase Imaging Agents.


ABSTRACT: Gaucher disease (GD) is a lysosomal storage disorder caused by inherited deficiencies in β-glucocerebrosidase (GBA). Current treatments require rapid disease diagnosis and a means of monitoring therapeutic efficacy, both of which may be supported by the use of GBA-targeting activity-based probes (ABPs). Here, we report the synthesis and structural analysis of a range of cyclophellitol epoxide and aziridine inhibitors and ABPs for GBA. We demonstrate their covalent mechanism-based mode of action and uncover binding of the new N-functionalised aziridines to the ligand binding cleft. These inhibitors became scaffolds for the development of ABPs; the O6-fluorescent tags of which bind in an allosteric site at the dimer interface. Considering GBA's preference for O6- and N-functionalised reagents, a bi-functional aziridine ABP was synthesized as a potentially more powerful imaging agent. Whilst this ABP binds to two unique active site clefts of GBA, no further benefit in potency was achieved over our first generation ABPs. Nevertheless, such ABPs should serve useful in the study of GBA in relation to GD and inform the design of future probes.

SUBMITTER: Rowland RJ 

PROVIDER: S-EPMC9298352 | biostudies-literature | 2021 Nov

REPOSITORIES: biostudies-literature

altmetric image

Publications

Design, Synthesis and Structural Analysis of Glucocerebrosidase Imaging Agents.

Rowland Rhianna J RJ   Chen Yurong Y   Breen Imogen I   Wu Liang L   Offen Wendy A WA   Beenakker Thomas J TJ   Su Qin Q   van den Nieuwendijk Adrianus M C H AMCH   Aerts Johannes M F G JMFG   Artola Marta M   Overkleeft Herman S HS   Davies Gideon J GJ  

Chemistry (Weinheim an der Bergstrasse, Germany) 20211029 66


Gaucher disease (GD) is a lysosomal storage disorder caused by inherited deficiencies in β-glucocerebrosidase (GBA). Current treatments require rapid disease diagnosis and a means of monitoring therapeutic efficacy, both of which may be supported by the use of GBA-targeting activity-based probes (ABPs). Here, we report the synthesis and structural analysis of a range of cyclophellitol epoxide and aziridine inhibitors and ABPs for GBA. We demonstrate their covalent mechanism-based mode of action  ...[more]

Similar Datasets

| S-EPMC5033727 | biostudies-literature
| S-EPMC6923765 | biostudies-literature
| S-EPMC6930555 | biostudies-literature
| S-EPMC3546735 | biostudies-literature
| S-EPMC9737981 | biostudies-literature
| S-EPMC3630741 | biostudies-literature
| S-EPMC2642980 | biostudies-literature
| S-EPMC7667836 | biostudies-literature
| S-EPMC3542276 | biostudies-literature
| S-EPMC2941433 | biostudies-literature