Unknown

Dataset Information

0

Antibody CDR amino acids underlying the functionality of antibody repertoires in recognizing diverse protein antigens.


ABSTRACT: Antibodies recognize protein antigens with exquisite specificity in a complex aqueous environment, where interfacial waters are an integral part of the antibody-protein complex interfaces. In this work, we elucidate, with computational analyses, the principles governing the antibodies' specificity and affinity towards their cognate protein antigens in the presence of explicit interfacial waters. Experimentally, in four model antibody-protein complexes, we compared the contributions of the interaction types in antibody-protein antigen complex interfaces with the antibody variants selected from phage-displayed synthetic antibody libraries. Evidently, the specific interactions involving a subset of aromatic CDR (complementarity determining region) residues largely form the predominant determinant underlying the specificity of the antibody-protein complexes in nature. The interfacial direct/water-mediated hydrogen bonds accompanying the CDR aromatic interactions are optimized locally but contribute little in determining the epitope location. The results provide insights into the phenomenon that natural antibodies with limited sequence and structural variations in an antibody repertoire can recognize seemingly unlimited protein antigens. Our work suggests guidelines in designing functional artificial antibody repertoires with practical applications in developing novel antibody-based therapeutics and diagnostics for treating and preventing human diseases.

SUBMITTER: Peng HP 

PROVIDER: S-EPMC9307644 | biostudies-literature | 2022 Jul

REPOSITORIES: biostudies-literature

altmetric image

Publications

Antibody CDR amino acids underlying the functionality of antibody repertoires in recognizing diverse protein antigens.

Peng Hung-Pin HP   Hsu Hung-Ju HJ   Yu Chung-Ming CM   Hung Fei-Hung FH   Tung Chao-Ping CP   Huang Yu-Chuan YC   Chen Chi-Yung CY   Tsai Pei-Hsun PH   Yang An-Suei AS  

Scientific reports 20220722 1


Antibodies recognize protein antigens with exquisite specificity in a complex aqueous environment, where interfacial waters are an integral part of the antibody-protein complex interfaces. In this work, we elucidate, with computational analyses, the principles governing the antibodies' specificity and affinity towards their cognate protein antigens in the presence of explicit interfacial waters. Experimentally, in four model antibody-protein complexes, we compared the contributions of the intera  ...[more]

Similar Datasets

| S-EPMC9478573 | biostudies-literature
| S-EPMC5629668 | biostudies-literature
| S-EPMC4528422 | biostudies-literature
| S-EPMC6908821 | biostudies-literature
| S-EPMC3212734 | biostudies-literature
| S-EPMC5378893 | biostudies-literature
| S-EPMC7039331 | biostudies-literature
| S-EPMC10818278 | biostudies-literature
| S-EPMC5103708 | biostudies-literature
| S-EPMC3927142 | biostudies-literature