Project description:Van der Waals layered transition-metal chalcogenides are drawing significant attention owing to their intriguing physical properties. This group of materials consists of abundant members with various elements, having a variety of different structures. However, they are all crystalline materials, and the physical properties of van der Waals layered quasicrystals have never been studied to date. Here, we report on the discovery of superconductivity in a van der Waals layered quasicrystal of Ta1.6Te. The electrical resistivity, magnetic susceptibility, and specific heat of the quasicrystal unambiguously validate the occurrence of bulk superconductivity at a transition temperature of ~1 K. This discovery can promote new research on assessing the physical properties of novel van der Waals layered quasicrystals as well as two-dimensional quasicrystals; moreover, it paves the way toward new frontiers of superconductivity in thermodynamically stable quasicrystals.
Project description:Ferromagnetism and superconductivity are two key ingredients for topological superconductors, which can serve as building blocks of fault-tolerant quantum computers. Adversely, ferromagnetism and superconductivity are typically also two hostile orderings competing to align spins in different configurations, and thus making the material design and experimental implementation extremely challenging. A single material platform with concurrent ferromagnetism and superconductivity is actively pursued. In this paper, we fabricate van der Waals Josephson junctions made with iron-based superconductor Fe(Te,Se), and report the global device-level transport signatures of interfacial ferromagnetism emerging with superconducting states for the first time. Magnetic hysteresis in the junction resistance is observed only below the superconducting critical temperature, suggesting an inherent correlation between ferromagnetic and superconducting order parameters. The 0-π phase mixing in the Fraunhofer patterns pinpoints the ferromagnetism on the junction interface. More importantly, a stochastic field-free superconducting diode effect was observed in Josephson junction devices, with a significant diode efficiency up to 10%, which unambiguously confirms the spontaneous time-reversal symmetry breaking. Our work demonstrates a new way to search for topological superconductivity in iron-based superconductors for future high Tc fault-tolerant qubit implementations from a device perspective.
Project description:Valence fluctuation of interacting electrons plays a crucial role in emergent quantum phenomena in correlated electron systems. The theoretical rationale is that this effect can drive a band insulator into a superconductor through charge redistribution around the Fermi level. However, the root cause of such a fluctuating leap in the ionic valency remains elusive. Here, we demonstrate a valence-skipping-driven insulator-to-superconductor transition and realize quasi-two-dimensional superconductivity in a van der Waals insulator GeP under pressure. This is shown to result from valence skipping of the Ge cation, altering its average valency from 3+ to 4+, turning GeP from a layered compound to a three-dimensional covalent system with superconducting critical temperature reaching its maximum of 10 K. Such a valence-skipping-induced superconductivity with a quasi-two-dimensional nature in thin samples, showing a Berezinskii-Kosterlitz-Thouless-like character, is further confirmed by angle-dependent upper-critical-field measurements. These findings provide a model system to examine competing order parameters in valence-skipping systems.
Project description:The electrical phase transition in van der Waals (vdW) layered materials such as transition-metal dichalcogenides and Bi2Sr2CaCu2O8+x (Bi-2212) high-temperature superconductor has been explored using various techniques, including scanning tunneling and photoemission spectroscopies, and measurements of electrical resistance as a function of temperature. In this study, we develop one useful method to elucidate the electrical phases in vdW layered materials: indium (In)-contacted vdW tunneling spectroscopy for 1T-TaS2, Bi-2212 and 2H-MoS2. We utilized the vdW gap formed at an In/vdW material interface as a tunnel barrier for tunneling spectroscopy. For strongly correlated electron systems such as 1T-TaS2 and Bi-2212, pronounced gap features corresponding to the Mott and superconducting gaps were respectively observed at T = 4 K. We observed a gate dependence of the amplitude of the superconducting gap, which has potential applications in a gate-tunable superconducting device with a SiO2/Si substrate. For In/10 nm-thick 2H-MoS2 devices, differential conductance shoulders at bias voltages of approximately ± 0.45 V were observed, which were attributed to the semiconducting gap. These results show that In-contacted vdW gap tunneling spectroscopy in a fashion of field-effect transistor provides feasible and reliable ways to investigate electronic structures of vdW materials.
Project description:Two-dimensional magnets and superconductors are emerging as tunable building-blocks for quantum computing and superconducting spintronic devices, and have been used to fabricate all two-dimensional versions of traditional devices, such as Josephson junctions. However, novel devices enabled by unique features of two-dimensional materials have not yet been demonstrated. Here, we present NbSe2/CrSBr van der Waals superconducting spin valves that exhibit infinite magnetoresistance and nonreciprocal charge transport. These responses arise from a unique metamagnetic transition in CrSBr, which controls the presence of localized stray fields suitably oriented to suppress the NbSe2 superconductivity in nanoscale regions and to break time reversal symmetry. Moreover, by integrating different CrSBr crystals in a lateral heterostructure, we demonstrate a superconductive spin valve characterized by multiple stable resistance states. Our results show how the unique physical properties of layered materials enable the realization of high-performance quantum devices based on novel working principles.
Project description:Two-dimensional conjugated coordination polymers exhibit remarkable charge transport properties, with copper-based benzenehexathiol (Cu-BHT) being a rare superconductor. However, the atomic structure of Cu-BHT has remained unresolved, hindering a deeper understanding of the superconductivity in such materials. Here, we show the synthesis of single crystals of Cu3BHT with high crystallinity, revealing a quasi-two-dimensional kagome structure with non-van der Waals interlayer Cu-S covalent bonds. These crystals exhibit intrinsic metallic behavior, with conductivity reaching 103 S/cm at 300 K and 104 S/cm at 2 K. Notably, superconductivity in Cu3BHT crystals is observed at 0.25 K, attributed to enhanced electron-electron interactions and electron-phonon coupling in the non-van der Waals structure. The discovery of this clear correlation between atomic-level crystal structure and electrical properties provides a crucial foundation for advancing superconductor coordination polymers, with potential to revolutionize future quantum devices.
Project description:The dimensional limit of ferroelectricity has been long explored. The critical contravention is that the downscaling of ferroelectricity leads to a loss of polarization. This work demonstrates a zero-dimensional ferroelectricity by the atomic sliding at the restrained van der Waals interface of crossed tungsten disufilde nanotubes. The developed zero-dimensional ferroelectric diode in this work presents not only non-volatile resistive memory, but also the programmable photovoltaic effect at the visible band. Benefiting from the intrinsic dimensional limitation, the zero-dimensional ferroelectric diode allows electrical operation at an ultra-low current. By breaking through the critical size of depolarization, this work demonstrates the ultimately downscaled interfacial ferroelectricity of zero-dimensional, and contributes to a branch of devices that integrates zero-dimensional ferroelectric memory, nano electro-mechanical system, and programmable photovoltaics in one.
Project description:Superconductor-ferromagnet interfaces in two-dimensional heterostructures present a unique opportunity to study the interplay between superconductivity and ferromagnetism. The realization of such nanoscale heterostructures in van der Waals (vdW) crystals remains largely unexplored due to the challenge of making atomically-sharp interfaces from their layered structures. Here, we build a vdW ferromagnetic Josephson junction (JJ) by inserting a few-layer ferromagnetic insulator Cr2Ge2Te6 into two layers of superconductor NbSe2. The critical current and corresponding junction resistance exhibit a hysteretic and oscillatory behavior against in-plane magnetic fields, manifesting itself as a strong Josephson coupling state. Also, we observe a central minimum of critical current in some JJ devices as well as a nontrivial phase shift in SQUID structures, evidencing the coexistence of 0 and π phase in the junction region. Our study paves the way to exploring sensitive probes of weak magnetism and multifunctional building-blocks for phase-related superconducting circuits using vdW heterostructures.
Project description:The Boltzmann distribution of electrons sets a fundamental barrier to lowering energy consumption in metal-oxide-semiconductor field-effect transistors (MOSFETs). Negative capacitance FET (NC-FET), as an emerging FET architecture, is promising to overcome this thermionic limit and build ultra-low-power consuming electronics. Here, we demonstrate steep-slope NC-FETs based on two-dimensional molybdenum disulfide and CuInP2S6 (CIPS) van der Waals (vdW) heterostructure. The vdW NC-FET provides an average subthreshold swing (SS) less than the Boltzmann's limit for over seven decades of drain current, with a minimum SS of 28 mV dec-1. Negligible hysteresis is achieved in NC-FETs with the thickness of CIPS less than 20 nm. A voltage gain of 24 is measured for vdW NC-FET logic inverter. Flexible vdW NC-FET is further demonstrated with sub-60 mV dec-1 switching characteristics under the bending radius down to 3.8 mm. These results demonstrate the great potential of vdW NC-FET for ultra-low-power and flexible applications.
Project description:Two-dimensional van der Waals materials have demonstrated fascinating optical and electrical characteristics. However, reports on magnetic properties and spintronic applications of van der Waals materials are scarce by comparison. Here, we report anomalous Hall effect measurements on single crystalline metallic Fe3GeTe2 nanoflakes with different thicknesses. These nanoflakes exhibit a single hard magnetic phase with a near square-shaped magnetic loop, large coercivity (up to 550?mT at 2?K), a Curie temperature near 200?K and strong perpendicular magnetic anisotropy. Using criticality analysis, the coupling length between van der Waals atomic layers in Fe3GeTe2 is estimated to be ~5 van der Waals layers. Furthermore, the hard magnetic behaviour of Fe3GeTe2 can be well described by a proposed model. The magnetic properties of Fe3GeTe2 highlight its potential for integration into van der Waals magnetic heterostructures, paving the way for spintronic research and applications based on these devices.