Project description:As a consequence of acquired or intrinsic disease resistance, the prognosis for patients with relapsed or refractory T-cell acute lymphoblastic leukemia (T-ALL) is dismal. Novel, less toxic drugs are clearly needed. One of the most promising emerging therapeutic strategies for cancer treatment is targeted immunotherapy. Immune therapies have improved outcomes for patients with other hematologic malignancies including B-cell ALL; however no immune therapy has been successfully developed for T-ALL. We hypothesize targeting CD38 will be effective against T-ALL. We demonstrate that blasts from patients with T-ALL have robust surface CD38 surface expression and that this expression remains stable after exposure to multiagent chemotherapy. CD38 is expressed at very low levels on normal lymphoid and myeloid cells and on a few tissues of nonhematopoietic origin, suggesting that CD38 may be an ideal target. Daratumumab is a human immunoglobulin G1κ monoclonal antibody that binds CD38, and has been demonstrated to be safe and effective in patients with refractory multiple myeloma. We tested daratumumab in a large panel of T-ALL patient-derived xenografts (PDX) and found striking efficacy in 14 of 15 different PDX. These data suggest that daratumumab is a promising novel therapy for pediatric T-ALL patients.
Project description:Inotuzumab ozogamicin (InO) is an antibody drug conjugate composed of a humanized monoclonal antibody targeting the cell surface receptor CD22 coupled to a cytotoxic calicheamicin payload via an acid labile linker. InO has shown significant activity in relapsed and refractory B-cell precursor acute lymphoblastic leukemia (BCP-ALL) in both single agent and combination chemotherapy regimens in adult and pediatric trials. Its use in newly diagnosed elderly patients has also been established while clinical trials investigating its use in newly diagnosed pediatric patients and fit adults are ongoing. Notable toxicities include sinusoidal obstruction syndrome (SOS), particularly in patients who undergo hematopoietic stem cell transplantation (HSCT) after InO as well as myelosuppression and B-cell aplasia which confer increased infection risk, particularly in combination with cytotoxic chemotherapy. In the relapsed/refractory (R/R) setting, the planned subsequent curative therapy modality must be considered when using InO to mitigate SOS risk if proceeding to HSCT and account for potential B-cell aplasia if proceeding to chimeric antigen receptor CAR-T therapy. Studies exploring mechanisms of resistance or failure of InO are ongoing but modulation or loss CD22 expression, alternative CD22 splicing, and high Bcl-2 expression have been implicated. In this review, we will summarize the currently available data on InO, with an emphasis on pediatric trials, and explore future directions including combinatorial therapy.
Project description:In childhood B-cell precursor acute lymphoblastic leukemia (BCP-ALL), cytogenetic abnormalities remain important diagnostic and prognostic tools. A number of well-established abnormalities are routinely used in risk stratification for treatment. These include high hyperdiploidy and ETV6-RUNX1 fusion, classified as good risk, while Philadelphia chromosome (Ph) positive ALL and rearrangements of the KMT2A (MLL) gene define poor risk. A poor risk subgroup of intrachromosomal amplification of chromosome 21 (iAMP21-ALL) has been described, in which intensification of therapy has greatly improved outcome. Until recently, no consistent molecular features were defined in around 30% of BCP-ALL (known as B-other-ALL). Recent studies are classifying them into distinct subgroups, some with clear potential for novel therapeutic approaches. For example, in 1 poor risk subtype, known as Ph-like/BCR-ABL1-like ALL, approximately 10% have rearrangements of ABL-class tyrosine kinases: including ABL1, ABL2, PDGFRB, PDGFRA, and CSF1R. Notably, they show a poor response to standard chemotherapy, while they respond to treatment with tyrosine kinase inhibitors, such as imatinib. In other Ph-like-ALL patients, deregulation of the cytokine receptor, CRLF2, and JAK2 rearrangements lead to activation of the JAK-STAT signaling pathway, implicating a specific role for JAK inhibitors in their treatment. Other novel subgroups within B-other-ALL are defined by the IGH-DUX4 translocation, related to deletions of the ERG gene and a good outcome, while fusions involving ZNF384, MEF2D, and intragenic PAX5 amplification (PAX5 AMP) are linked to a poor outcome. Continued genetic screening will eventually lead to complete genomic classification of BCP-ALL and define more molecular targets for less toxic therapies.
Project description:Substantial progress has been made in the treatment of precursor B-cell acute lymphoblastic leukemia (B-ALL), but recurrent disease remains a leading cause of death in children due to cancer and outcomes for adults with B-ALL remain poor. Recently, complete clinical responses have been observed in small numbers of patients with B-ALL treated with adoptive immunotherapy using T cells genetically engineered to express chimeric antigen receptors (CARs) targeting CD19, a cell surface molecule present in essentially all cases of B-ALL. Preclinical data suggest that CARs targeting CD22, another antigen present in the majority of B-ALL cases, are similarly potent. Several clinical studies already under way will soon more clearly define the rate of response to this novel therapy in B-ALL. Further work is needed to identify optimal platforms for CAR-based adoptive immunotherapy for leukemia, to establish guidelines for managing toxicity, and to determine whether the remissions induced by this approach can be rendered durable.
Project description:B-cell precursor acute lymphoblastic leukemia (BCP-ALL) with mixed-lineage leukemia gene rearrangement (MLL-r) is a poor-prognosis subtype for which additional therapeutic targets are urgently needed. Currently no multi-omics data set for primary MLL r patient cells exists that integrates transcriptomics, proteomics and glycomics to gain an inclusive picture of theranostic targets. Methods: We have integrated transcriptomics, proteomics and glycomics to i) obtain the first inclusive picture of primary patient BCP-ALL cells and identify molecular signatures that distinguish leukemic from normal precursor B-cells and ii) better understand the benefits and limitations of the applied technologies to deliver deep molecular sequence data across major cellular biopolymers. Results: MLL-r cells feature an extensive remodeling of their glycocalyx, with increased levels of Core 2-type O-glycans and complex N-glycans as well as significant changes in sialylation and fucosylation. Notably, glycosaminoglycan remodeling from chondroitin sulfate to heparan sulfate was observed. A survival screen, to determine if glycan remodeling enzymes are redundant, identified MGAT1 and NGLY1, essential components of the N-glycosylation/degradation pathway, as highly relevant within this in vitro screening. OGT and OGA, unique enzymes that regulate intracellular O-GlcNAcylation, were also indispensable. Transcriptomics and proteomics further identified Fes and GALNT7-mediated glycosylation as possible therapeutic targets. While there is overall good correlation between transcriptomics and proteomics data, we demonstrate that a systematic combined multi-omics approach delivers important diagnostic information that is missed when applying a single omics technology. Conclusions: Apart from confirming well-known MLL-r BCP-ALL glycoprotein markers, our integrated multi-omics workflow discovered previously unidentified diagnostic/therapeutic protein targets.
Project description:The prognosis for adults with precursor B-cell acute lymphoblastic leukemia (B-ALL) remains poor, in part from a lack of therapeutic targets. We identified the type I cytokine receptor subunit CRLF2 in a functional screen for B-ALL-derived mRNA transcripts that can substitute for IL3 signaling. We demonstrate that CRLF2 is overexpressed in approximately 15% of adult and high-risk pediatric B-ALL that lack MLL, TCF3, TEL, and BCR/ABL rearrangements, but not in B-ALL with these rearrangements or other lymphoid malignancies. CRLF2 overexpression can result from translocation with the IGH locus or intrachromosomal deletion and is associated with poor outcome. CRLF2 overexpressing B-ALLs share a transcriptional signature that significantly overlaps with a BCR/ABL signature, and is enriched for genes involved in cytokine receptor and JAK-STAT signaling. In a subset of cases, CRLF2 harbors a Phe232Cys gain-of-function mutation that promotes constitutive dimerization and cytokine independent growth. A mutually exclusive subset harbors activating mutations in JAK2. In fact, all 22 B-ALLs with mutant JAK2 that we analyzed overexpress CRLF2, distinguishing CRLF2 as the key scaffold for mutant JAK2 signaling in B-ALL. Expression of WT CRLF2 with mutant JAK2 also promotes cytokine independent growth that, unlike CRLF2 Phe232Cys or ligand-induced signaling by WT CRLF2, is accompanied by JAK2 phosphorylation. Finally, cells dependent on CRLF2 signaling are sensitive to small molecule inhibitors of either JAKs or protein kinase C family kinases. Together, these findings implicate CRLF2 as an important factor in B-ALL with diagnostic, prognostic, and therapeutic implications.
Project description:MicroRNAs (miRNAs) play dual roles in acute lymphoblastic leukemia (ALL) as both tumor suppressors and oncogenes, and miRNA expression profiles can be used for patient risk stratification. Precise assessment of miRNA levels is crucial for understanding their role and function in gene regulation. Quantitative real-time polymerase chain reaction (qPCR) is a reliable, rapid, and cost-effective method for analyzing miRNA expression, assuming that appropriate normalization to stable references is performed to ensure valid data. In this study, we evaluated the stability of six commonly used miRNA references (5sRNA, SNORD44, RNU6, RNU1A1, miR-103a-3p, and miR-532-5p) across nine B-cell precursor (BCP) ALL cell lines, 22 patient-derived xenograft (PDX) BCP ALL samples from different organ compartments of leukemia bearing mice, and peripheral blood mononuclear cells (PBMCs) from six healthy donors. We used four different algorithms (Normfinder, ∆CT, geNorm, and BestKeeper) to assess the most stably expressed reference across all samples. Moreover, we validated our data in an additional set of 13 PDX ALL samples and six healthy controls, identifying miR-103a-3p and miR-532-5p as the most stable references for miRNA normalization in BCP ALL studies. Additionally, we demonstrated the critical importance of using a stable reference to accurately interpret miRNA data.
Project description:Early precursor T cell-acute lymphoblastic leukemia (ETP-ALL) is a rare entity characterized by chemo-resistance and a paucity of data regarding optimal management. We review here the literature regarding the management of ETP-ALL and focus on the recent, emerging data, regarding the potential role of molecularly targeted approaches with a focus on venetoclax.